respirable dust
Recently Published Documents


TOTAL DOCUMENTS

417
(FIVE YEARS 97)

H-INDEX

22
(FIVE YEARS 4)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 565
Author(s):  
Xueming Fang ◽  
Bingyou Jiang ◽  
Liang Yuan ◽  
Yuxiang Liang ◽  
Bo Ren ◽  
...  

An experimental study on the flow rate and atomization characteristics of a new gas–liquid two-phase flow nozzle was carried out to use high-concentration respirable dust in the workplace of high-efficiency sedimentation coal production based on the gas–liquid two-phase flow nozzle technology. The simulation roadway of dust fall in large coal mines was constructed, and the respirable rock dust produced by fully mechanized mining surfaces was chosen as the research object. The effects of humidity on the capture effect of respirable rock dust were analyzed in the experimental study. The results demonstrated that: (1) the distribution range of the particle size of fogdrops declines with the reduction in fogdrops D50, D[3,2] and D[4,3], which are produced by gas–liquid two-phase flow nozzles. (2) The initial ambient humidity in the simulated roadway was 64.8% RH. After the gas–liquid two-phase flow spray was started, the ambient humidity was elevated by 23.2 to 23.5% RH within 840s and tended to be stable and no longer grew after reaching 88.0–88.3% RH. The initial growth rate of the ambient humidity in the simulated roadway was high, and then was gradually slowed down. (3) Humidity is an important factor influencing the collection of respirable dust. The humidity at 10.0 m leeward of the dust-producing point was increased by 19.6% RH, and the sedimentation rate of respirable dust was increased by 6.73%; the two growth rates were 13.1% RH and 9.90% at 20.0 m; 16.4% RH and 15.42% at 30.0 m; 18.4% RH and 11.20% at 40.0 m. In practical applications of the gas–liquid two-phase flow nozzle in coal mining activities, attention shall be paid to not only the influences of its atomization characteristics on the capture effect of respirable dust but also the influences of the flow rate of the nozzle on the humidity of the working surface. Appropriate gas and water supply pressures shall be chosen according to the space and respirable dust concentration on the working surface to realize a better dust removal effect.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1707
Author(s):  
Tinh Thai ◽  
Ales Bernatik ◽  
Petr Kučera

Air pollution associated with suspended particles has become a significant concern in Vietnam recently. The study aimed to (1) investigate dust sources; (2) measure concentration levels of Total Suspended Particulate (TSP), Particulate Matter (PM) fractions; (3) identify silica levels and the correlation with respirable particles at a cement grinding plant in Vietnam. A total of 312 samples (52 TSP, 160 PMs) at 13 processes were measured using the direct-reading dust meter. The silica composition was analyzed in a certified laboratory using the X-ray fluorescence (XRF) technique. SPSS version 26 for Window was used to analyze the data. The operations of the cement grinding plant created multiple dust sources from the jetty to the cement dispatch process. The TSP levels ranged 0.06–38.24 mg m−3, and 40.38 % (n = 21) TSP samples exceeded the Permissible Exposure Limit (PEL) for an 8-h working shift. Besides that, there was a wide range and significant concentration levels of PMs in the cement processes. The levels of PMs were PM1 (0.00–0.06 mg m−3), PM2.5 (0.01–0.83 mg m−3), PM4 (0.02–4.59 mg m−3), PM7 (0.03–16.94 mg m−3), and PM10 (0.04–26.85 mg m−3). The highest mean levels of PMs factions were measured at the pre-grinding process. The inefficient operation of the dust collector contributed a significant factor to the dust dispersion in this process. The silica’s mean (SD) composition in respirable dust was 20.4 % (0.86) and was not significantly different amongst the processes. There was a significant correlation between the levels of respirable dust and silica exposure in the cement grinding plant (r = 0.99). The improvement of indoor air quality is needed to prevent health effects on cement workers.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Qian Wang ◽  
Ruixin Song ◽  
Junpeng Wang ◽  
Cuicui Xu ◽  
Gang Zhou ◽  
...  

To explore the dustfall effect of combined nozzles used in a fully mechanized mining face, Phase Doppler Interferometry (PDI) system was used to test 6 types of high-efficiency atomizer under 8 MPa. A new nozzle group of nozzles 2#, 3#, and 5# is selected by atomization experiment. The atomization experiment and field application test of the preferred nozzle are performed. The experiment and field application results show that, with the spray pressure of 8 MPa, when the distance in the nozzle group is 200 mm and the angle change is 10 degrees, the atomization effect is the best. Under the optimal parameters, the average dustfall rates of the entire and respirable dust are 81.82% and 79.96%, respectively, which are 23.49% and 20.75% higher than those of the traditional shearer.


2021 ◽  
pp. oemed-2021-107694
Author(s):  
Leonard H T Go ◽  
Francis H Y Green ◽  
Jerrold L Abraham ◽  
Andrew Churg ◽  
Edward L Petsonk ◽  
...  

ObjectivesIn 2010, 29 coal miners died due to an explosion at the Upper Big Branch (UBB) mine in West Virginia, USA. Autopsy examinations of 24 individuals with evaluable lung tissue identified 17 considered to have coal workers’ pneumoconiosis (CWP). The objectives of this study were to characterise histopathological findings of lung tissue from a sample of UBB fatalities and better understand the respirable dust concentrations experienced by these miners at UBB relative to other US coal mines.MethodsOccupational pulmonary pathologists evaluated lung tissue specimens from UBB fatalities for the presence of features of pneumoconiosis. Respirable dust and quartz samples submitted for regulatory compliance from all US underground coal mines prior to the disaster were analysed.ResultsFamilies of seven UBB fatalities provided consent for the study. Histopathologic evidence of CWP was found in all seven cases. For the USA, central Appalachia and UBB, compliance dust samples showed the geometric mean for respirable dust was 0.468, 0.420 and 0.518 mg/m3, respectively, and respirable quartz concentrations were 0.030, 0.038 and 0.061 mg/m3. After adjusting for quartz concentrations, UBB exceeded the US permissible exposure limit (PEL) for respirable dust in 28% of samples.ConclusionsAlthough higher than average respirable dust and quartz levels were observed at UBB, over 200 US underground coal mines had higher dust concentrations than UBB and over 100 exceeded the PEL more frequently. Together with lung histopathological findings among UBB fatalities, these data suggest exposures leading to CWP in the USA are more prevalent than previously understood.


AIP Advances ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 125307
Author(s):  
Huawei Jin ◽  
Ping Luo ◽  
Juan Dou ◽  
Huachun Bai

Author(s):  
Engr. Amosu C.O. ◽  

Respirable dust is everywhere (in the surface and underground mine) operations and its environs. Ririwai Tin mine is laden with dust of metallic particles of Arsenic (As), Chromium (Cr), Lead (Pb) and Zinc (Zn). These particles are also found in the soil. Continuous inhalation of dust could lead to irreversible diseases. This paper addresses the control of dust, using previous review of prevailing metallic concentrates. This research answers questions like which are the dust control strategies to be adopted by Ririwai tin mine to obtain best practice? What challenges will Ririwai tin mine face when applying dust control methods in their operation? What is the impact of dust laden with metallic particles on soil, water, vegetation and man in Ririwai tin mine?


2021 ◽  
Vol 1 (2) ◽  
pp. 29-36
Author(s):  
Amosu C.O.

Respirable dust is everywhere (in the surface and underground mine) operations and its environs. Ririwai Tin mine is laden with dust of metallic particles of Arsenic (As), Chromium (Cr), Lead (Pb) and Zinc (Zn). These particles are also found in the soil. Continuous inhalation of dust could lead to irreversible diseases. This paper addresses the control of dust, using previous review of prevailing metallic concentrates. This research answers questions like which are the dust control strategies to be adopted by Ririwai tin mine to obtain best practice? What challenges will Ririwai tin mine face when applying dust control methods in their operation? What is the impact of dust laden with metallic particles on soil, water, vegetation and man in Ririwai tin mine?


Sign in / Sign up

Export Citation Format

Share Document