cloud droplets
Recently Published Documents


TOTAL DOCUMENTS

705
(FIVE YEARS 149)

H-INDEX

57
(FIVE YEARS 5)

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 141
Author(s):  
Yan Yang ◽  
Wei Zhou ◽  
Qian Gao ◽  
Delong Zhao ◽  
Xiange Liu ◽  
...  

Many studies have shown that air pollutants have complex impacts on urban precipitation. Meteorological weather station and satellite Aerosol Optical Depth (AOD) product data from the last 20 years, combined with simulation results from the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), this paper focuses on the effects of air pollutants on summer precipitation in different regions of Beijing. These results showed that air pollution intensity during the summer affected the precipitation contribution rate (PCR) of plains and mountainous regions in the Beijing area, especially in the plains. Over the past 20 years, plains PCR increased by ~10% when the AOD augmented by 0.15, whereas it decreased with lower pollution levels. In contrast, PCR in mountainous areas decreased with higher pollution levels and increased with lower pollution levels. Our analysis from model results indicated that aerosol increases reduce the effective particle size of cloud droplets and raindrops. Smaller cloud raindrops more readily transport to high air layers and participate in the generation of ice-phase substances in the clouds, increasing the total amount of cloud water in the air in a certain time, which ultimately enhanced precipitation intensity on the plains. The removal of pollutants caused by increased precipitation in the plains decreased rainfall levels in mountainous areas.


2022 ◽  
Author(s):  
Edward Hindman ◽  
Scott Lindstrom

Abstract. Mt. Everest’s summit pyramid is the highest obstacle on earth to the wintertime jet-stream winds. Downwind, in its wake, a visible plume often forms. The meteorology and composition of the plume are unknown. Accordingly, we observed real-time images from a geosynchronous meteorological satellite from November 2020 through March 2021 to identify plumes and collect the corresponding meteorological data. We used the data with a basic meteorological model to show the plumes formed when sufficiently moist air was drawn into the wake. We conclude the plumes were composed initially of either cloud droplets or ice particles depending on the temperature. One plume was observed to glaciate downwind. Thus, Everest plumes may be a source of snowfall formed insitu. The plumes, however, were not composed of resuspended snow.


2021 ◽  
Vol 118 (52) ◽  
pp. e2110889118
Author(s):  
William Bains ◽  
Janusz J. Petkowski ◽  
Paul B. Rimmer ◽  
Sara Seager

The atmosphere of Venus remains mysterious, with many outstanding chemical connundra. These include the unexpected presence of ∼10 ppm O2 in the cloud layers, an unknown composition of large particles in the lower cloud layers, and hard to explain measured vertical abundance profiles of SO2 and H2O. We propose a hypothesis for the chemistry in the clouds that largely addresses all of the above anomalies. We include ammonia (NH3), a key component that has been tentatively detected both by the Venera 8 and Pioneer Venus probes. NH3 dissolves in some of the sulfuric acid cloud droplets, effectively neutralizing the acid and trapping dissolved SO2 as ammonium sulfite salts. This trapping of SO2 in the clouds, together with the release of SO2 below the clouds as the droplets settle out to higher temperatures, explains the vertical SO2 abundance anomaly. A consequence of the presence of NH3 is that some Venus cloud droplets must be semisolid ammonium salt slurries, with a pH of ∼1, which matches Earth acidophile environments, rather than concentrated sulfuric acid. The source of NH3 is unknown but could involve biological production; if so, then the most energy-efficient NH3-producing reaction also creates O2, explaining the detection of O2 in the cloud layers. Our model therefore predicts that the clouds are more habitable than previously thought, and may be inhabited. Unlike prior atmospheric models, ours does not require forced chemical constraints to match the data. Our hypothesis, guided by existing observations, can be tested by new Venus in situ measurements.


2021 ◽  
Vol 13 (22) ◽  
pp. 4685
Author(s):  
Juan Huo ◽  
Yongheng Bi ◽  
Bo Liu ◽  
Congzheng Han ◽  
Minzheng Duan

A new dual-frequency Doppler polarimetric cloud radar (DDCR), working at 35-GHz (Ka-band radar, wavelength: 8.6 mm) and 94-GHz (W-band radar, wavelength: 3.2 mm) frequencies, has been in operation at Yangbajing Observatory on the Tibetan Plateau (China) for more than a year at the time of writing. Calculations and field observations show that the DDCR has a high detection sensitivity of −39.2 dBZ at 10 km and −33 dBZ at 10 km for the 94-GHz radar and 35-GHz radar, respectively. The radar reflectivity measured by the two radars illustrates different characteristics for different types of cloud: for precipitation, the attenuation caused by liquid cloud droplets is obviously more serious for the 94-GHz radar than the 35-GHz radar (the difference reaches 40 dB in some cases), and the 94-GHz radar lost signals due to serious attenuation by heavy rainfall; while for clouds dominated by ice crystals where the attenuation significantly weakens, the 94-GHz radar shows better detection ability than the 35-GHz radar. Observations in the Tibetan region show that the 35-GHz radar is prone to missing cloud near the edge, such as the cloud-top portion, resulting in underestimation of the cloud-top height (CTH). Statistical analysis based on one year of observations shows that the mean CTH measured by the 94-GHz radar in the Tibetan region is approximately 600 m higher than that measured by the 35-GHz radar. The analysis in this paper shows that the DDCR, with its dual-frequency design, provides more valuable information than simpler configurations, and will therefore play an important role in improving our understanding of clouds and precipitation in the Tibetan region.


2021 ◽  
Vol 21 (21) ◽  
pp. 16093-16120
Author(s):  
Wendong Ge ◽  
Junfeng Liu ◽  
Kan Yi ◽  
Jiayu Xu ◽  
Yizhou Zhang ◽  
...  

Abstract. Sulfur dioxide (SO2) is a major atmospheric pollutant and precursor of sulfate aerosols, which influences air quality, cloud microphysics, and climate. Therefore, better understanding the conversion of SO2 to sulfate is essential to simulate and predict sulfur compounds more accurately. This study evaluates the effects of in-cloud aqueous-phase chemistry on SO2 oxidation in the Community Earth System Model version 2 (CESM2). We replaced the default parameterized SO2 aqueous-phase reactions with detailed HOx, Fe, N, and carbonate chemistry in cloud droplets and performed a global simulation for 2014–2015. Compared with the observations, the results incorporating detailed cloud aqueous-phase chemistry greatly reduced SO2 overestimation. This overestimation was reduced by 0.1–10 ppbv (parts per billion by volume) in most of Europe, North America, and Asia and more than 10 ppbv in parts of China. The biases in annual simulated SO2 mixing ratios decreased by 46 %, 41 %, and 22 % in Europe, the USA, and China, respectively. Fe chemistry and HOx chemistry contributed more to SO2 oxidation than N chemistry. Higher concentrations of soluble Fe and higher pH values could further enhance the oxidation capacity. This study emphasizes the importance of detailed in-cloud aqueous-phase chemistry for the oxidation of SO2. These mechanisms can improve SO2 simulation in CESM2 and deepen understanding of SO2 oxidation and sulfate formation.


2021 ◽  
Author(s):  
Moein Mohammadi ◽  
Jakub Lukasz Nowak ◽  
Guus Bertens ◽  
Jan Molacek ◽  
Wojciech Kumala ◽  
...  

Abstract. The microphysical properties of cloud droplets, such as droplet size distribution and droplet number concentration, were studied. A series of field experiments were performed in the summer of 2019 at the Umweltforschungsstation Schneefernerhaus (UFS), an environmental research station located just below the peak of Mount Zugspitze in the German Alps. A VisiSize D30 manufactured by Oxford Laser Ltd., which is a shadowgraph imaging instrument, was utilized for the first time to measure the size and velocity of cloud droplets during this campaign. Furthermore, a phase Doppler interferometer (PDI) device, manufactured by Artium Tech. Inc., was simultaneously measuring cloud droplets. After applying modifications to the built-in software algorithms, the results from the two instruments show reasonable agreement regarding droplet sizing and velocimetry for droplet diameters larger than 13 µm. Moreover, discrepancies were observed concerning the droplet number concentration results, especially with smaller droplet sizes. Further investigation by applying appropriate filters to the data allowed the attribution of the discrepancies to two phenomena: the different optical performance of the sensors with regard to small droplets and high turbulent velocity fluctuations relative to the mean flow that result in an uncertain estimate of the volume of air passing through the PDI probe volume.


2021 ◽  
Vol 14 (10) ◽  
pp. 6777-6794
Author(s):  
Sorin Nicolae Vâjâiac ◽  
Andreea Calcan ◽  
Robert Oscar David ◽  
Denisa-Elena Moacă ◽  
Gabriela Iorga ◽  
...  

Abstract. Warm clouds, consisting of liquid cloud droplets, play an important role in modulating the amount of incoming solar radiation to Earth's surface and thus the climate. The size and number concentration of these cloud droplets control the reflectance of the cloud, the formation of precipitation and ultimately the lifetime of the cloud. Therefore, in situ observations of the number and diameter of cloud droplets are frequently performed with cloud and aerosol spectrometers, which determine the optical diameters of cloud particles (in the range of up to a few tens of micrometers) by measuring their forward-scattering cross sections in visible light and comparing these values with Mie theoretical computations. The use of such instruments must rely on a fast working scheme consisting of a limited pre-defined uneven grid of cross section values that corresponds to a theoretically derived uneven set of size intervals (bins). However, as more detailed structural analyses of warm clouds are needed to improve future climate projects, we present a new numerical post-flight methodology using recorded particle-by-particle sample files. The Mie formalism produces a complicated relationship between a particle's diameter and its forward-scattering cross section. This relationship cannot be expressed in an analytically closed form, and it should be numerically computed point by point, over a certain grid of diameter values. The optimal resolution required for constructing the diagram of this relationship is therefore analyzed. Cloud particle statistics are further assessed using a fine grid of particle diameters in order to capture the finest details of the cloud particle size distributions. The possibility and the usefulness of using coarser size grids, with either uneven or equal intervals, is also discussed. For coarse equidistant size grids, the general expressions of cloud microphysical parameters are calculated and the ensuing relative errors are discussed in detail. The proposed methodology is further applied to a subset of measured data, and it is shown that the overall uncertainties in computing various cloud parameters are mainly driven by the measurement errors of the forward-scattering cross section for each particle. Finally, the influence of the relatively large imprecision in the real and imaginary parts of the refractive index of cloud droplets on the size distributions and on the ensuing cloud parameters is analyzed. It is concluded that, in the presence of high atmospheric loads of hydrophilic and light-absorbing aerosols, such imprecisions may drastically affect the reliability of the cloud data obtained with cloud and aerosol spectrometers. Some complementary measurements for improving the quality of the cloud droplet size distributions obtained in post-flight analyses are suggested.


2021 ◽  
Vol 21 (18) ◽  
pp. 14141-14158
Author(s):  
Mengyu Sun ◽  
Dongxia Liu ◽  
Xiushu Qie ◽  
Edward R. Mansell ◽  
Yoav Yair ◽  
...  

Abstract. To investigate the effects of aerosols on lightning activity, the Weather Research and Forecasting (WRF) Model with a two-moment bulk microphysical scheme and bulk lightning model was employed to simulate a multicell thunderstorm that occurred in the metropolitan Beijing area. The results suggest that under polluted conditions lightning activity is significantly enhanced during the developing and mature stages. Electrification and lightning discharges within the thunderstorm show characteristics distinguished by different aerosol conditions through microphysical processes. Elevated aerosol loading increases the cloud droplets numbers, the latent heat release, updraft and ice-phase particle number concentrations. More charges in the upper level are carried by ice particles and enhance the electrification process. A larger mean-mass radius of graupel particles further increases non-inductive charging due to more effective collisions. In the continental case where aerosol concentrations are low, less latent heat is released in the upper parts and, as a consequence, the updraft speed is weaker, leading to smaller concentrations of ice particles, lower charging rates and fewer lightning discharges.


2021 ◽  
Author(s):  
Jaakko Ahola ◽  
Tomi Raatikainen ◽  
Muzaffer Ege Alper ◽  
Jukka-Pekka Keskinen ◽  
Harri Kokkola ◽  
...  

Abstract. The number of cloud droplets formed at the cloud base depends both on the properties of aerosol particles and the updraft velocity of an air parcel at the cloud base. As the spatial scale of updrafts is too small to be resolved in global atmospheric models, the updraft velocity is commonly parameterised based on the available turbulent kinetic energy. Here we present alternative methods through parameterising updraft velocity based on high-resolution large eddy simulation (LES) runs in the case of marine stratocumulus clouds. First we use our simulations to assess the accuracy of a simple linear parametrisation where the updraft velocity depends only on cloud top radiative cooling. In addition, we present two different machine learning methods (Gaussian process emulation and random forest) that account for different boundary layer conditions and cloud properties. We conclude that both machine learning parameterisations reproduce the LES-based updraft velocities at about the same accuracy, while the simple approach employing radiative cooling only produce on average lower coefficient of determination and higher root mean square error values. Finally, we apply these machine learning methods to find the key parameters affecting cloud base updraft velocities.


Sign in / Sign up

Export Citation Format

Share Document