specific inhibition
Recently Published Documents


TOTAL DOCUMENTS

1497
(FIVE YEARS 111)

H-INDEX

100
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Olga L. Meshcheryakova ◽  
Galina P. Shuvaeva ◽  
Tatyana V. Sviridova ◽  
Anna A. Tolkacheva ◽  
Olga S. Korneeva

The researchers of this study investigated the biosynthesis of squalene by the yeast S. cerevisiae VGSH-2 through the activity of squalene epoxidase, which is a key enzyme in the conversion of squalene to ergosterol. It has been established that under aerobic conditions the antimycotic drug terbinafine promotes the switching of ergosterol formation to squalene synthesis. This switch occurs through specific inhibition of the squalene epoxidase of the yeast S. cerevisiae VGSH-2, thus increasing the biosynthetic ability of the yeast towards squalene. According to the results of this study, the optimal concentration of terbinofine in the nutrient medium was 0.3 μmol / cm3 . This concentration led to a 5-fold decrease in squalene epoxidase activity and a 7-8 times increase in squalene synthesis. The results obtained can be used to develop a competitive technology for the industrial production of squalene by microbial synthesis. Keywords: squalene, yeast, biosynthesis, inhibition of activity, terbinafine, squalene epoxidase, Saccharomices cerevisiae VGSH-2


Author(s):  
Raíssa Bernardes da Silva ◽  
Willian dos Reis Bertoldo ◽  
Lucila Langoni Naves ◽  
Fernanda Bernadelli de Vito ◽  
Jeziel Dener Damasceno ◽  
...  

Leishmania parasites are the causative agents of a group of neglected tropical diseases known as leishmaniasis. The molecular mechanisms employed by these parasites to adapt to the adverse conditions found in their hosts are not yet completely understood. DNA repair pathways can be used by Leishmania to enable survival in the interior of macrophages, where the parasite is constantly exposed to oxygen reactive species. In higher eukaryotes, DNA repair pathways are coordinated by the central protein kinases ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR). The enzyme Exonuclease-1 (EXO1) plays important roles in DNA replication, repair, and recombination, and it can be regulated by ATM- and ATR-mediated signaling pathways. In this study, the DNA damage response pathways in promastigote forms of L. major were investigated using bioinformatics tools, exposure of lineages to oxidizing agents and radiation damage, treatment of cells with ATM and ATR inhibitors, and flow cytometry analysis. We demonstrated high structural and important residue conservation for the catalytic activity of the putative LmjEXO1. The overexpression of putative LmjEXO1 made L. major cells more susceptible to genotoxic damage, most likely due to the nuclease activity of this enzyme and the occurrence of hyper-resection of DNA strands. These cells could be rescued by the addition of caffeine or a selective ATM inhibitor. In contrast, ATR-specific inhibition made the control cells more susceptible to oxidative damage in an LmjEXO1 overexpression-like manner. We demonstrated that ATR-specific inhibition results in the formation of extended single-stranded DNA, most likely due to EXO1 nucleasic activity. Antagonistically, ATM inhibition prevented single-strand DNA formation, which could explain the survival phenotype of lineages overexpressing LmjEXO1. These results suggest that an ATM homolog in Leishmania could act to promote end resection by putative LmjEXO1, and an ATR homologue could prevent hyper-resection, ensuring adequate repair of the parasite DNA.


EBioMedicine ◽  
2022 ◽  
Vol 75 ◽  
pp. 103803
Author(s):  
Jianxiong Zeng ◽  
Xiaochun Xie ◽  
Xiao-Li Feng ◽  
Ling Xu ◽  
Jian-Bao Han ◽  
...  

RSC Advances ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 1105-1120
Author(s):  
Monica Pandey ◽  
Kirti Wasnik ◽  
Shubhra Gupta ◽  
Monika Singh ◽  
Sukanya Patra ◽  
...  

Mesoporous Ag/Sn–SnO2 composite nanoparticles exhibits extraordinary inhibitory properties by targeting different proteins of bacteria and Candida species which can be used to eliminate the resistance of traditional antibiotics.


Author(s):  
Morteza Ahmadzadeh-Darinsoo ◽  
Mojtaba Ahmadzadeh-Darinsoo ◽  
Shahsanam Abbasi ◽  
Ehsan Arefian ◽  
Claude Bernard ◽  
...  

2021 ◽  
Author(s):  
Aleksandra Fergin ◽  
Gabriel Boesch ◽  
Nadja R. Greter ◽  
Simon Berger ◽  
Alex Hajnal

AbstractThe sumoylation (SUMO) pathway is involved in a variety of processes during C. elegans development, such as gonadal and vulval fate specification, cell cycle progression and maintenance of chromosome structure. The ubiquitous expression of the sumoylation machinery and its involvement in many essential processes has made it difficult to dissect the tissue-specific roles of protein sumoylation and identify the specific target proteins. To overcome these challenges, we have established tools to block protein sumoylation and degrade sumoylated target proteins in a tissue-specific and temporally controlled manner. We employed the auxin-inducible protein degradation system (AID) to down-regulate AID-tagged SUMO E3 ligase GEI-17 or the SUMO ortholog SMO-1, either in the vulval precursor cells (VPCs) or in the gonadal anchor cell (AC). Tissue-specific inhibition of GEI-17 and SMO-1 revealed diverse roles of the SUMO pathway during vulval development, such as AC positioning, basement membrane (BM) breaching, vulval cell fate specification and epithelial morphogenesis. Inhibition of sumoylation in the VPCs resulted in an abnormal shape of the vulval toroids and ectopic cell fusions. Sumoylation of the ETS transcription factor LIN-1 at K169 mediates a subset of these SUMO functions, especially the proper contraction of the ventral vulA toroids. Thus, the SUMO pathway plays diverse roles throughout vulval development.


EBioMedicine ◽  
2021 ◽  
Vol 74 ◽  
pp. 103752
Author(s):  
Sara G. Pelaz ◽  
Myriam Jaraíz-Rodríguez ◽  
Andrea Álvarez-Vázquez ◽  
Rocío Talaverón ◽  
Laura García-Vicente ◽  
...  

2021 ◽  
Vol 9 (24) ◽  
Author(s):  
Hsin‐Jung Ho ◽  
Koichi Kikuchi ◽  
Daiki Oikawa ◽  
Shun Watanabe ◽  
Yoshitomi Kanemitsu ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1915
Author(s):  
Jiali Chen ◽  
Yuheng Luo ◽  
Yan Li ◽  
Daiwen Chen ◽  
Bing Yu ◽  
...  

Chlorogenic acid (CGA) is a natural polyphenol compound abundant in green plants with antioxidant and anti-inflammatory activities. Here, we explore its protective effects and potential mechanisms of action on intestinal epithelium exposure to oxidative stress (OS). We show that CGA attenuated OS-induced intestinal inflammation and injury in weaned pigs, which is associated with elevated antioxidant capacity and decreases in inflammatory cytokine secretion and cell apoptosis. In vitro study showed that CGA elevated phosphorylation of two critical signaling proteins of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway, Akt and nuclear factor erythroid-derived-related factor 2, leading to the elevated expression of intracellular antioxidant enzymes and heme oxygenase-1 (HO-1). Specific inhibition of HO-1 partially abolished its anti-inflammatory effect in IPEC-J2 cells exposure to OS. Interestingly, CGA suppressed the tumor necrosis factor-α (TNF-α) induced inflammatory responses in IPEC-J2 cells by decreasing phosphorylation of two critical inflammatory signaling proteins, NF-kappa-B inhibitor alpha (IκBα) and nuclear factor-κB (NF-κB). Specific inhibition of HO-1 cannot fully abolish its anti-inflammatory effect on the TNF-α-challenged cells. These results strongly suggested that CGA is a natural anti-inflammatory agent that can attenuate OS-induced inflammation and injury of intestinal epithelium via co-regulating the PI3K/Akt and IκBα/NF-κB signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document