essential trace element
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 51)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
Vol 294 ◽  
pp. 118627
Author(s):  
Xiaolin Wang ◽  
Marcella Fernandes de Souza ◽  
Michel J. Mench ◽  
Haichao Li ◽  
Yong Sik Ok ◽  
...  

Author(s):  
Sayantan Maity ◽  
Basab Bijayi Dhar

Selenium (Se), an essential trace element, present in several antioxidant enzymes are responsible for protecting cells from oxidative damage. In the recent past, a large number of naturally inspired Se...


2021 ◽  
Author(s):  
Avis D. W. Nugroho ◽  
Berdien van Olst ◽  
Sjef Boeren ◽  
Michiel Kleerebezem ◽  
Herwig Bachmann

Manganese (Mn) is an essential trace element that is supplemented in microbial media with varying benefits across species and growth conditions. We found that growth of Lactococcus cremoris was unaffected by manganese omission from the growth medium. The main proteome adaptation to manganese omission involved increased manganese transporter production (up to 2000-fold), while the remaining 10 significant proteome changes were between 1.4 and 4 fold. Further investigation in translationally-blocked (TB), non-growing cells showed that Mn supplementation (20 µM) led to approximately 1.5X faster acidification compared to Mn-free conditions. However, this faster acidification stagnated within 24 hours, likely due to draining of intracellular NADH that coincides with substantial loss of culturability. Conversely, without manganese, non-growing cells persisted to acidify for weeks, albeit at a reduced rate, but maintaining redox balance and culturability. Strikingly, despite being unculturable, α-keto acid-derived aldehydes continued to accumulate in cells incubated in the presence of manganese, whereas without manganese cells predominantly formed the corresponding alcohols. This is most likely reflecting NADH availability for the alcohol dehydrogenase-catalyzed conversion. Overall, manganese influences the lactococcal acidification rate, and flavor formation capacity in a redox dependent manner. These are important industrial traits especially during cheese ripening, where cells are in a non-growing, often unculturable state.


Author(s):  
Isis Baró-Camarasa ◽  
Ana Judith Marmolejo-Rodríguez ◽  
Antonio Cobelo-García ◽  
Marta D. Palacios ◽  
Daniela Alejandra Murillo-Cisneros ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Qianqian Guo ◽  
Liwen Li ◽  
Shanshan Hou ◽  
Ziqiao Yuan ◽  
Chenhui Li ◽  
...  

Iron is an essential trace element for the human body, and its deficiency or excess can induce a variety of biological processes. Plenty of evidences have shown that iron metabolism is closely related to the occurrence and development of tumors. In addition, iron plays an important role in cell death, which is very important for the development of potential strategies for tumor treatment. Here, we reviewed the latest research about iron metabolism disorders in various types of tumors, the functions and properties of iron in ferroptosis and ferritinophagy, and new opportunities for iron-based on treatment methods for tumors, providing more information regarding the prevention and treatment of tumors.


2021 ◽  
Vol 22 (21) ◽  
pp. 11932
Author(s):  
Lichun Qiao ◽  
Xuan Liu ◽  
Yujie He ◽  
Jiaheng Zhang ◽  
Hao Huang ◽  
...  

Fluorine is widely dispersed in nature and has multiple physiological functions. Although it is usually regarded as an essential trace element for humans, this view is not held universally. Moreover, chronic fluorosis, mainly characterized by skeletal fluorosis, can be induced by long-term excessive fluoride consumption. High concentrations of fluoride in the environment and drinking water are major causes, and patients with skeletal fluorosis mainly present with symptoms of osteosclerosis, osteochondrosis, osteoporosis, and degenerative changes in joint cartilage. Etiologies for skeletal fluorosis have been established, but the specific pathogenesis is inconclusive. Currently, active osteogenesis and accelerated bone turnover are considered critical processes in the progression of skeletal fluorosis. In recent years, researchers have conducted extensive studies in fields of signaling pathways (Wnt/β-catenin, Notch, PI3K/Akt/mTOR, Hedgehog, parathyroid hormone, and insulin signaling pathways), stress pathways (oxidative stress and endoplasmic reticulum stress pathways), epigenetics (DNA methylation and non-coding RNAs), and their inter-regulation involved in the pathogenesis of skeletal fluorosis. In this review, we summarised and analyzed relevant findings to provide a basis for comprehensive understandings of the pathogenesis of skeletal fluorosis and hopefully propose more effective prevention and therapeutic strategies.


2021 ◽  
Vol 22 (19) ◽  
pp. 10808
Author(s):  
Elena G. Varlamova ◽  
Egor A. Turovsky ◽  
Ekaterina V. Blinova

This review presents the latest data on the importance of selenium nanoparticles in human health, their use in medicine, and the main known methods of their production by various methods. In recent years, a multifaceted study of nanoscale complexes in medicine, including selenium nanoparticles, has become very important in view of a number of positive features that make it possible to create new drugs based on them or significantly improve the properties of existing drugs. It is known that selenium is an essential trace element that is part of key antioxidant enzymes. In mammals, there are 25 selenoproteins, in which selenium is a key component of the active site. The important role of selenium in human health has been repeatedly proven by several hundred works in the past few decades; in recent years, the study of selenium nanocomplexes has become the focus of researchers. A large amount of accumulated data requires generalization and systematization in order to improve understanding of the key mechanisms and prospects for the use of selenium nanoparticles in medicine, which is the purpose of this review.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jazmín Soto-Verdugo ◽  
Arturo Ortega

Over the years, most of the research concerning manganese exposure was restricted to the toxicity of neuronal cells. Manganese is an essential trace element that in high doses exerts neurotoxic effects. However, in the last two decades, efforts have shifted toward a more comprehensive approach that takes into account the involvement of glial cells in the development of neurotoxicity as a brain insult. Glial cells provide structural, trophic, and metabolic support to neurons. Nevertheless, these cells play an active role in adult neurogenesis, regulation of synaptogenesis, and synaptic plasticity. Disturbances in glial cell function can lead to neurological disorders, including neurodegenerative diseases. This review highlights the pivotal role that glial cells have in manganese-induced neurotoxicity as well as the most sounding mechanisms involved in the development of this phenomenon.


Sign in / Sign up

Export Citation Format

Share Document