accretionary complex
Recently Published Documents


TOTAL DOCUMENTS

498
(FIVE YEARS 112)

H-INDEX

52
(FIVE YEARS 3)

Author(s):  
Qigui Mao ◽  
Songjian Ao ◽  
Brian F. Windley ◽  
Zhiyong Zhang ◽  
Miao Sang ◽  
...  

To constrain the closure mechanism and time of the Paleo-Asian Ocean, we report new geochronological and geochemical data for Triassic granites along a NW−SE corridor from Eastern Tianshan to Beishan, NW China. Seven granites have U-Pb ages that young southwards from 245 Ma to 234 Ma in the Kanguer accretionary complex, to 237 Ma to 234 Ma in the eastern Central Tianshan block, to 229 Ma to 223 Ma in the Liuyuan accretionary complex. Granites in the Kanguer accretionary complex formed by fractional crystallization and are peraluminous, high-K, calc-alkaline, and crust-derived. They have very low MgO (Mg# = 6−9), Cr, and Ni contents, and their high εNd(t) (+3.40) and εHf(t) (+4.49 to +11.91) isotopes indicate that the Dananhu arc crust was juvenile. The Huaniushan pluton in the Liuyuan accretionary complex displays the geochemical signatures of both A1- and A2-type granites (Y/Nb = 0.32−3.39). All other granites in the Central Tianshan block and Liuyuan accretionary complex are aluminous A2-types with high K2O+Na2O, Al, rare earth elements (REE), Zr+Nb+Y, Ga, Fe/Mg, and Y/Nb and remarkable depletions of Eu, Ba, Nb, Ta, Sr, P, and Ti. They have a broad range of MgO (Mg# = 9−59), Cr, and Ni contents, Isr (0.70741−0.70945) values, negative εNd (t) (−2.98 to −1.14), and low to moderate εHf(t) (−1.22 to +7.78), which suggests a mixture of mantle and crustal components. These 245−223 Ma granitoids show marked Nb-Ta depletions that point to a subduction origin. Notable enrichments in Nd-Hf isotopes of Late Triassic granites are likely an indication of collision. Integration with previous data enables us to conclude that the delamination of an oceanic slab and mantle upwelling induced partial melting of thickened arc crust during a tectonic transition from a multiple supra-subduction margin to a collisional setting in the Late Triassic.


2021 ◽  
pp. 101895
Author(s):  
Zaizheng Zhou ◽  
Zuozhen Han ◽  
Sanzhong Li ◽  
Zhaoxia Jiang ◽  
Xiyao Li ◽  
...  

Author(s):  
Changlei Fu ◽  
Zhen Yan ◽  
Jonathan C. Aitchison ◽  
Wenjiao Xiao ◽  
Solomon Buckman ◽  
...  

Recognition of any intra-oceanic arc-trench system (IOAS) could provide invaluable information on the tectonic framework and geodynamic evolution of the vanished ocean basin. The Tanjianshan Complex and mafic-ultramafic rocks along the North Qaidam ultra-high pressure metamorphic belt in NW China record the subduction process of the Proto-Tethyan Ocean. Four lithotectonic units, including island arc, ophiolite, forearc basin, and accretionary complex, are recognized based on detailed field investigation. They rest on the northern margin of the Qaidam block and occur as allochthons in fault contact with underlying high-grade metamorphic rocks. The ophiolite unit mainly consists of ultramafic rocks, 527−506 Ma gabbro, 515−506 Ma plagiogranite, dolerite, and massive lava. High-Cr spinels in serpentinite, dolerite with forearc basalt affinity, and boninitic lava collectively indicate a forearc setting. The accretionary complex, exposed to the south of the ophiolite complex and island arc, is highly disrupted and contains repeated slices of basalt, 495−486 Ma tuff, chert, limestone, and mélange. Tuffs with positive zircon εHf(t) values indicate derivation from a nearby juvenile island arc. These lithotectonic units, as well as the back-arc basin, are interpreted to constitute a Cambrian IOAS that formed during the northward subduction of the Proto-Tethyan Ocean. Combined with regional geology, we propose a new geodynamic model involving short-lived Mariana-type subduction and prolonged Andean-type subduction to account for the complex evolution of the Proto-Tethyan Ocean. The reconstruction of a relatively complete IOAS from the North Qaidam belt not only reveals a systematic evolution of intra-oceanic subduction but also advances our understanding of the subduction and accretion history of the Proto-Tethyan Ocean.


2021 ◽  
Vol 873 (1) ◽  
pp. 012100
Author(s):  
Jonathan Adii ◽  
Dian Kusumawati ◽  
Cevian Falevi ◽  
David P Sahara

Abstract Present day Molucca or Maluku sea plate in the eastern of Indonesia possesses a complex tectonic setting. This complex tectonic setting has been formed due to the collision of an actively moving Eurasian plate and Philippine sea plate toward the Maluku sea plate. At the west, Maluku sea plate is subducting beneath Sangihe arc, which began in the early Miocene. While at the east, Maluku sea plate is subducting under Halmahera arc, since in the middle Miocene. These subduction processes take place up to the present. Therefore, it has formed Maluku sea plate into an inverted U-shape slab under a thickening accretionary complex. Seismicity distribution has clearly shown the U-shape slab. Earthquake events take place on the subducting slab, and interestingly on the above accretionary complex as well. Maluku sea plate might pose hazards to surrounding islands: northern Sulawesi, Halmahera island, Sangihe island and Talaud island. The possible hazard, for instance, a thrusting earthquake which may generate tsunami to the nearby islands. Hence, understanding its tectonic and seismicity signature, especially at the shallow part, are indeed important in the Maluku sea region. Faulting regime could be analyzed using focal mechanism ternary diagram analysis, by categorizing the focal mechanisms’ strike, dip and rake values. Thus, in this study we aim to analyze faulting regime and hazard potential in the complex. Maluku setting using ternary diagram analysis.


2021 ◽  
Author(s):  
Francisco E. Apen ◽  
John Wakabayashi ◽  
Howard W. Day ◽  
Sarah M. Roeske ◽  
A. Kate Souders ◽  
...  

ABSTRACT The Franciscan Complex of California, the type example of an exhumed accretionary complex, records a protracted history of voluminous subduction accretion along the western margin of North America. Recent geochronological work has improved our knowledge of the timing of accretion, but the details of the accretionary history are disputed, in part, due to uncertainties in regional-scale correlations of different units. We present new detrital zircon U-Pb ages from two sites on opposite sides of San Francisco Bay in central California that confirm previously proposed correlations. Both sites are characterized by a structurally higher blueschist-facies unit (Angel Island unit) underlain by a prehnite-pumpellyite-facies unit (Alcatraz unit). The Angel Island unit yields maximum depositional ages (MDAs) ranging from 112 ± 1 Ma to 114 ± 1 Ma (±2σ), and the Alcatraz unit yields MDAs between 94 ± 2 Ma and 99 ± 1 Ma. Restoration of post-subduction dextral displacement suggests these sites were originally 44–78 km apart and much closer to other Franciscan units that are now exposed farther south in the Diablo Range. Comparison with detrital zircon dates from the Diablo Range supports correlations of the Bay Area units with certain units in the Diablo Range. In contrast, correlations with Franciscan units in the northern Coast Ranges of California are not robust: some units are clearly older than those in the Bay Area whereas others exhibit distinct differences in provenance. Integration of age data from throughout the Franciscan Complex indicates long-lived and episodic accretion from the Early Cretaceous to Paleogene. Although minor, sporadic accretion began earlier, significant accretion occurred during the interval 123–80 Ma and was followed by minor accretion at ca. 53–49 Ma. Periods of accretion and nonaccretion were associated with arc magmatism in the Sierra Nevada–Klamath region, cessation of arc activity, and reorganization of paleodrainage systems, which implicates plate dynamics and sediment availability as major controls on the development of the Franciscan Complex.


Sign in / Sign up

Export Citation Format

Share Document