gravity recovery
Recently Published Documents


TOTAL DOCUMENTS

308
(FIVE YEARS 132)

H-INDEX

41
(FIVE YEARS 6)

2021 ◽  
Vol 14 (1) ◽  
pp. 147
Author(s):  
Małgorzata Wińska

Similar to seasonal and intraseasonal variations in polar motion (PM), interannual variations are also largely caused by changes in the angular momentum of the Earth’s geophysical fluid layers composed of the atmosphere, the oceans, and in-land hydrologic flows (AOH). Not only are inland freshwater systems crucial for interannual PM fluctuations, but so are atmospheric surface pressures and winds, oceanic currents, and ocean bottom pressures. However, the relationship between observed geodetic PM excitations and hydro-atmospheric models has not yet been determined. This is due to defects in geophysical models and the partial knowledge of atmosphere–ocean coupling and hydrological processes. Therefore, this study provides an analysis of the fluctuations of PM excitations for equatorial geophysical components χ1 and χ2 at interannual time scales. The geophysical excitations were determined from different sources, including atmospheric, ocean models, Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On data, as well as from the Land Surface Discharge Model. The Multi Singular Spectrum Analysis method was applied to retain interannual variations in χ1 and χ2 components. None of the considered mass and motion terms studied for the different atmospheric and ocean models were found to have a negligible effect on interannual PM. These variables, derived from different Atmospheric Angular Momentum (AAM) and Oceanic Angular Momentum (OAM) models, differ from each other. Adding hydrologic considerations to the coupling of AAM and OAM excitations was found to provide benefits for achieving more consistent interannual geodetic budgets, but none of the AOH combinations fully explained the total observed PM excitations.


2021 ◽  
Author(s):  
Yi Yu Lai

Abstract Newtonian inertia has initiated science centuries ago and dictates modern society with isolated logic systems. The hidden premise of this system is rigid existence in an isolated environment that defies any internal motion. The equivalent principle from general relativity and the T-symmetry reversible processes from thermodynamics also rely on such a notion. However, bio-inertia originates from the blind spots of this system; surface tension region inversion as the most general interactions is sacrificed for methodological isolation/test purposes and then neglected by science. We define and experiment bio-inertia as “parameter-against-gravity-recovery”, revealing the interaction between Planck regions and surface tension regions issues negentropy, conventional quantum collapse period is then extended to lifespan. This modulation which integrates quantum mechanics, gravitational waves, thermodynamics into surface tension bio quantum path duality needs to break the isolated logic method and takes musical inversion as structural dynamics in bio-systems, generalized as Basic Law of Evolution. An original evolutionary physical string oscillation memory equation is unveiled for the first time.


2021 ◽  
Vol 118 (47) ◽  
pp. e2109086118
Author(s):  
Shin-Chan Han ◽  
Khosro Ghobadi-Far ◽  
In-Young Yeo ◽  
Christopher M. McCullough ◽  
Eunjee Lee ◽  
...  

The overall size and timing of monsoon floods in Bangladesh are challenging to measure. The inundated area is extensive in low-lying Bangladesh, and observations of water storage are key to understanding floods. Laser-ranging instruments on Gravity Recovery and Climate Experiment (GRACE) Follow-On spacecraft detected the peak water storage anomaly of 75 gigatons across Bangladesh in late July 2020. This is in addition to, and three times larger than, the maximum storage anomaly in soil layers during the same period. A flood propagation model suggested that the water mass, as shown in satellite observations, is largely influenced by slow floodplain and groundwater flow processes. Independent global positioning system measurements confirmed the timing and total volume of the flood water estimates. According to land surface models, the soils were saturated a month earlier than the timing of the peak floodplain storage observed by GRACE Follow-On. The cyclone Amphan replenished soils with rainfall just before the monsoon rains started, and consequently, excessive runoff was produced and led to the early onset of the 2020 flooding. This study demonstrated how antecedent soil moisture conditions can influence the magnitude and duration of flooding. Continuous monitoring of storage change from GRACE Follow-On gravity measurements provides important information complementary to river gauges and well levels for enhancing hydrologic flood forecasting models and assisting surface water management.


2021 ◽  
Vol 265 ◽  
pp. 112650
Author(s):  
Daocheng Yu ◽  
Cheinway Hwang ◽  
Ole Baltazar Andersen ◽  
Emmy T.Y. Chang ◽  
Lucile Gaultier

2021 ◽  
Vol 13 (21) ◽  
pp. 4362
Author(s):  
Spiros Pagiatakis ◽  
Athina Peidou

Geopotential models derived from Gravity Recovery and Climate Experiment (GRACE) mission measurements are significantly obscured by the presence of a systematic artifact, known as longitudinal stripes. Based on our previous work (Peidou and Pagiatakis, 2020) we provide an in-depth analysis of the latitudinal sampling characteristics of GRACE and we reveal the intriguing sampling mechanism that creates sub-Nyquist artifacts (stripes). Because the sub-Nyquist artifacts are poorly understood, we provide a simple simulation example to elucidate the mechanism of the sub-Nyquist artifact generation. Subsequently, we randomly select June 2009 daily GPS precise science orbits for GRACE-A to produce ground tracks to sample the low frequency disturbing potential (geoid) along the parallel of ϕ=10° N. The sampled geoid is then deinterlaced in space to produce a monthly data sequence whose detailed analysis shows that the sub-Nyquist artifacts (stripes) are produced from a critical sampling rate of the low degree gravitational field that is related to the ratio m/n of two mutually prime integers, where m is the number of days it takes to have a nearly repeat orbit and n is the number of complete orbits in one day. We perform extensive analyses of GRACE Level-2 data over a period of eight years to show the variability in the orbital characteristics that are directly linked to the orbit resonances (via integers m and n). It turns out that during short repeat cycle resonances the stripes are amplified. Finally, to minimize the presence of stripes in Level-2 data products, it is recommended that orbits of future missions should be designed to avoid the critical m/n ratios while appropriately monitoring and adjusting them during the mission. For completed missions, or missions that are already active, force modelling the latitudinal low frequency disturbing potential may be a viable and most preferred approach to filtering.


2021 ◽  
Vol 11 (20) ◽  
pp. 9594
Author(s):  
Lilu Cui ◽  
Cheng Zhang ◽  
Zhicai Luo ◽  
Xiaolong Wang ◽  
Qiong Li ◽  
...  

Accurate quantification of drought characteristics helps to achieve an objective and comprehensive analysis of drought events and to achieve early warning of drought and disaster loss assessment. In our study, a drought characterization approach based on drought severity index derived from Gravity Recovery and Climate Experiment (GRACE) and its Follow-On (GRACE-FO) data was used to quantify drought characteristics. In order to improve drought detection capability, we used the local drought data as calibration criteria to improve the accuracy of the drought characterization approach to determine the onset of drought. Additionally, the local precipitation data was used to test drought severity determined by the calibrated drought characterization approach. Results show that the drought event probability of detection (POD) of this approach in the four study regions increased by 61.29%, 25%, 94.29%, and 66.86%, respectively, after calibration. We used the calibrated approach to detect the drought events in Mainland China (MC) during 2016 and 2019. The results show that CAR of the four study regions is 100.00%, 92.31%, 100.00%, and 100.00%. Additionally, the precipitation anomaly index (PAI) data was used to evaluate the severity of drought from 2002 to 2020 determined by the calibrated approach. The results indicate that both have a strong similar spatial distribution. Our analysis demonstrates that the proposed approach can serve a useful tool for drought monitoring and characterization.


2021 ◽  
Vol 9 ◽  
Author(s):  
Diandong Ren ◽  
Aixue Hu

The widely used 15-year Gravity Recovery and Climate Experiment (GRACE) measured mass redistribution shows an increasing trend in the nontidal Earth’s moment of inertia (MOI). Various contributing components are independently evaluated using five high-quality atmospheric reanalysis datasets and a novelty numerical modeling system. We found a steady, statistically robust (passed a two-tailed t-test at p = 0.04 for dof = 15) rate of MOI increase reaching ∼11.0 × 1027 kg m2/yr, equivalent to a 11.45 sμ/yr increase in the length of day, during 2002–2017. Further analysis suggests that the Antarctic ice sheet contributes the most, followed by the Greenland ice sheet, the precipitation-driven land hydrological cycle, mountain glaciers, and the fluctuation of atmosphere, in this order. Short-term MOI spikes from the GRACE measurements are mostly associated with major low/mid-latitude earthquakes, fitting closely with the MOI variations from the hydrological cycle. Atmospheric fluctuation contributes the least but has a steady trend of 0.5 sμ/yr, with horizontal mass distribution contributing twice as much as the vertical expansion and associated lift of the atmosphere’s center of mass. The latter is a previously overlooked term affecting MOI fluctuation. The contribution to the observed MOI trend from a warming climate likely will persist in the future, largely due to the continuous mass loss from the Earth’s ice sheets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fengwei Wang ◽  
Yunzhong Shen ◽  
Qiujie Chen ◽  
Yu Sun

AbstractThe global sea-level budget is studied using the Gravity Recovery and Climate Experiment (GRACE) solutions, Satellite Altimetry and Argo observations based on the updated budget equation. When the global ocean mass change is estimated with the updated Tongji-Grace2018 solution, the misclosure of the global sea-level budget can be reduced by 0.11–0.22 mm/year compared to four other recent solutions (i.e. CSR RL06, GFZ RL06, JPL RL06 and ITSG-Grace2018) over the period January 2005 to December 2016. When the same missing months as the GRACE solution are deleted from altimetry and Argo data, the misclosure will be reduced by 0.06 mm/year. Once retained the GRACE C20 term, the linear trends of Tongji-Grace2018 and ITSG-Grace2018 solutions are 2.60 ± 0.16 and 2.54 ± 0.16 mm/year, closer to 2.60 ± 0.14 mm/year from Altimetry–Argo than the three RL06 official solutions. Therefore, the Tongji-Grace2018 solution can reduce the misclosure between altimetry, Argo and GRACE data, regardless of whether the C20 term is replaced or not, since the low-degree spherical harmonic coefficients of the Tongji-Grace2018 solution can capture more ocean signals, which are confirmed by the statistical results of the time series of global mean ocean mass change derived from five GRACE solutions with the spherical harmonic coefficients truncated to different degrees and orders.


2021 ◽  
Vol 13 (17) ◽  
pp. 3358
Author(s):  
Yifan Shen ◽  
Wei Zheng ◽  
Wenjie Yin ◽  
Aigong Xu ◽  
Huizhong Zhu ◽  
...  

Dense Global Position System (GPS) arrays can be used to invert the terrestrial water-storage anomaly (TWSA) with higher accuracy. However, the uneven distribution of GPS stations greatly limits the application of GPS to derive the TWSA. Aiming to solve this problem, we grid the GPS array using regression to raise the reliability of TWSA inversion. First, the study uses the random forest (RF) model to simulate crustal deformation in unobserved grids. Meanwhile, the new Machine-Learning Loading-Inverted Method (MLLIM) is constructed based on the traditional GPS derived method to raise the truthfulness of TWSA inversion. Second, this research selects southwest China as the study region, the MLLIM and traditional GPS inversion methods are used to derive the TWSA, and the inverted results are contrasted with datasets of the Gravity Recovery and Climate Experiment (GRACE) Mascon and the Global Land Data Assimilation System (GLDAS) model. The comparison shows that values of Pearson Correlation Coefficient (PCC) between the MLLIM and GRACE and GRACE Follow-On (GRACE-FO) are equal to 0.91 and 0.88, respectively; and the values of R-squared (R2) are equal to 0.76 and 0.65, respectively; the values of PCC and R2 between MLLIM and GLDAS solutions are equal to 0.79 and 0.65. Compared with the traditional GPS inversion, the MLLIM improves PCC and R2 by 8.85% and 7.99% on average, which indicates that the MLLIM can improve the accuracy of TWSA inversion more than the traditional GPS method. Third, this study applies the MLLIM to invert the TWSA in each province of southwest China and combines the precipitation to analyze the change of TWSA in each province. The results are as follows: (1) The spatial distribution of TWSA and precipitation is coincident, which is highlighted in southwest Yunnan and southeast Guangxi; (2) this study compares TWSA of MLLIM with GRACE and GLDAS solutions in each province, which indicates that the maximum value of PCC is as high as 0.86 and 0.94, respectively, which indicates the MLLIM can be used to invert the TWSA in the regions with sparse GPS stations. The TWSA based on the MLLIM can be used to fill the vacancy between GRACE and GRACE-FO.


2021 ◽  
Vol 13 (16) ◽  
pp. 3134
Author(s):  
Yara Mohajerani ◽  
David Shean ◽  
Anthony Arendt ◽  
Tyler C. Sutterley

Commonly used mass-concentration (mascon) solutions estimated from Level-1B Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On data, provided by processing centers such as the Jet Propulsion Laboratory (JPL) or the Goddard Space Flight Center (GSFC), do not give users control over the placement of mascons or inversion assumptions, such as regularization. While a few studies have focused on regional or global mascon optimization from spherical harmonics data, a global optimization based on the geometry of geophysical signal as a standardized product with user-defined points has not been addressed. Finding the optimal configuration with enough coverage to account for far-field leakage is not a trivial task and is often approached in an ad-hoc manner, if at all. Here, we present an automated approach to defining non-uniform, global mascon solutions that focus on a region of interest specified by the user, while maintaining few global degrees of freedom to minimize noise and leakage. We showcase our approach in High Mountain Asia (HMA) and Alaska, and compare the results with global uniform mascon solutions from range-rate data. We show that the custom mascon solutions can lead to improved regional trends due to a more careful sampling of geophysically distinct regions. In addition, the custom mascon solutions exhibit different seasonal variation compared to the regularized solutions. Our open-source pipeline will allow the community to quickly and efficiently develop optimized global mascon solutions for an arbitrary point or polygon anywhere on the surface of the Earth.


Sign in / Sign up

Export Citation Format

Share Document