chromatin conformation
Recently Published Documents


TOTAL DOCUMENTS

256
(FIVE YEARS 87)

H-INDEX

41
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Markus Goetz ◽  
Olivier Messina ◽  
Sergio Espinola ◽  
Jean-Bernard Fiche ◽  
Marcelo Nollmann

The spatial organization of chromatin at the scale of topologically associating domains (TADs) and below displays large cell-to-cell variations. Up until now, how this heterogeneity in chromatin conformation is shaped by chromatin condensation, TAD insulation, and transcription has remained mostly elusive. Here, we used Hi-M, a multiplexed DNA-FISH imaging technique providing developmental timing and transcriptional status, to show that the emergence of TADs at the ensemble level partially segregates the conformational space explored by single nuclei during the early development of Drosophila embryos. Surprisingly, a substantial fraction of nuclei displayed strong insulation even before TADs emerged. Moreover, active transcription within a TAD led to minor changes to the local inter- and intra-TAD chromatin conformation in single nuclei and only weakly affected insulation to the neighboring TAD. Overall, our results indicate that multiple parameters contribute to shaping the chromatin architecture of single nuclei at the TAD scale.


Author(s):  
Luca Nanni

AbstractDNA is the molecular basis of life and would total about three meters if linearly untangled. To fit in the cell nucleus at the micrometer scale, DNA has, therefore, to fold itself into several layers of hierarchical structures, which are thought to be associated with functional compartmentalization of genomic features like genes and their regulatory elements. For this reason, understanding the mechanisms of genome folding is a major biological research problem. Studying chromatin conformation requires high computational resources and complex data analyses pipelines. In this chapter, we first present the PyGMQL software for interactive and scalable data exploration for genomic data. PyGMQL allows the user to inspect genomic datasets and design complex analysis pipelines. The software presents itself as a easy-to-use Python library and interacts seamlessly with other data analysis packages. We then use the software for the study of chromatin conformation data. We focus on the epigenetic determinants of Topologically Associating Domains (TADs), which are region of high self chromatin interaction. The results of this study highlight the existence of a “grammar of genome folding” which dictates the formation of TADs and boundaries, which is based on the CTCF insulator protein. Finally we focus on the relationship between chromatin conformation and gene expression, designing a graph representation learning model for the prediction of gene co-expression from gene topological features obtained from chromatin conformation data. We demonstrate a correlation between chromatin topology and co-expression, shedding a new light on this debated topic and providing a novel computational framework for the study of co-expression networks.


2021 ◽  
Author(s):  
Vivek Kumar Raxwal ◽  
Somya Singh ◽  
Manu Agarwal ◽  
Karel Riha

New genes continuously emerge from non-coding DNA or by diverging from existing genes, but most of them are rapidly lost and only a few become fixed within the population. We hypothesized that young genes are subject to transcriptional and post-transcriptional regulation to limit their expression and minimize their exposure to purifying selection. We found that young genes in rice have relatively low expression levels, which can be attributed to distal enhancers, and closed chromatin conformation at their transcription start sites (TSS). The chromatin in TSS regions can be re-modeled in response to abiotic stress, indicating conditional expression of young genes. Furthermore, transcripts of young genes in Arabidopsis tend to be targeted by nonsense-mediated RNA decay, presenting another layer of regulation limiting their expression. Together, these data suggest that transcriptional and post-transcriptional mechanisms contribute to the conditional expression of young genes, which may alleviate purging selection while providing an opportunity for phenotypic exposure and functionalization.


2021 ◽  
Author(s):  
Bingxiang Xu ◽  
Xiaomeng Gao ◽  
Xiaoli Li ◽  
Yan Jia ◽  
Feifei Li ◽  
...  

AbstractHeat shock is a common environmental stress, while the response of the nucleus to it remains controversial in mammalian cells. Acute reaction and chronic adaptation to environmental stress may have distinct internal rewiring in the gene regulation networks. However, this difference remains largely unexplored. Here, we report that chromatin conformation and chromatin accessibility respond differently in short- and long-term heat shock in human K562 cells. Interestingly, we found that chromatin conformation in K562 cells was largely stable in response to short heat shock, while showed clear and characteristic changes after long-term heat treatment with little alteration in chromatin accessibility during the whole process. We further showed in silico and experimental evidence strongly suggesting that changes in chromatin conformation may largely stem from an accumulation of cells in the M stage of cell cycle in response to heat shock. Our results represent a paradigm shift away from the controversial view of chromatin response to heat shock and emphasize the necessity of cell cycle analysis while when interpreting bulk Hi-C data.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haiyang Guo ◽  
Yiming Wu ◽  
Mannan Nouri ◽  
Sandor Spisak ◽  
Joshua W. Russo ◽  
...  

AbstractAndrogen receptor (AR) in prostate cancer (PCa) can drive transcriptional repression of multiple genes including MYC, and supraphysiological androgen is effective in some patients. Here, we show that this repression is independent of AR chromatin binding and driven by coactivator redistribution, and through chromatin conformation capture methods show disruption of the interaction between the MYC super-enhancer within the PCAT1 gene and the MYC promoter. Conversely, androgen deprivation in vitro and in vivo increases MYC expression. In parallel, global AR activity is suppressed by MYC overexpression, consistent with coactivator redistribution. These suppressive effects of AR and MYC are mitigated at shared AR/MYC binding sites, which also have markedly higher levels of H3K27 acetylation, indicating enrichment for functional enhancers. These findings demonstrate an intricate balance between AR and MYC, and indicate that increased MYC in response to androgen deprivation contributes to castration-resistant PCa, while decreased MYC may contribute to responses to supraphysiological androgen therapy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1546-1546
Author(s):  
Zijuan Wu ◽  
LEI Fan ◽  
Luqiao Wang ◽  
Hanning Tang ◽  
Yi Miao ◽  
...  

Abstract Objective: Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disorder that mainly affects the elderly and is characterized by the expansion of small mature B-cells. New targeted drugs, such as the BTK inhibitor ibrutinib, have greatly improved patient survival but have also posed the challenge of drug resistance. The three-dimensional (3D) spatial structure of chromatin is highly dynamic and varies greatly between cell types and developmental stages, with the maintenance of chromatin homeostasis being of major significance in disease prevention. Accumulating evidence has suggested that changes in 3D genomic structures play an important role in cell development and differentiation, disease progression, as well as drug resistance. Nevertheless, the characteristics and functional significance of chromatin conformation in the resistance of CLL to ibrutinib remain unclear. In this study, we aimed to investigate the mechanism underlying ibrutinib resistance through multi-omics profiling, including the study of chromatin conformation. Thus, we would be able to demonstrate the importance of chromatin spatial organization in CLL and highlight the oncogenic factors contributing to CLL development and mediating ibrutinib resistance. Methods: An ibrutinib-resistant cell line was established by exposing cells to increasing doses of ibrutinib. High-throughput chromosome conformation capture (Hi-C), assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), bulk RNA sequencing (RNA-seq), and Tandem Mass Tag (TMT) were performed to explore differences between ibrutinib-resistant and parental cells. Peripheral blood mononuclear cells (PBMCs) from 53 CLL patients were collected for RNA-seq. Mitochondrial respiration and glycolysis were assessed via Seahorse analysis. The growth-inhibitory effects of tested drugs were evaluated via a CCK8 assay, and the combination index (CI), indicating synergy, was calculated using CompuSyn software. Apoptosis was detected via annexin V staining. Results: Between ibrutinib-resistant and parental cells changes in some chromosomes, including chr11 were observed (Figure 1A). p21-activated kinase 1 (PAK1), which is located on chr11 and frequently overexpressed or excessively activated in almost all cancer types and involved in almost every stage of cancer progression, was first explored for its role in CLL progression and drug resistance. The oncogene PAK1 was observed locate in a region where B-to-A compartment switching occurred (Figure 1B). Consistent with the results of ATAC-seq, RNA-seq, and TMT, Hi-C analysis revealed a transcriptional upregulation of PAK1 in ibrutinib-resistant CLL cells (Figure 1C). Functional analysis demonstrated that PAK1 overexpression significantly promoted cell proliferation, while knockdown markedly suppressed cell viability (Figure 1D). Cell viability assays indicated that the depletion of PAK1 increased ibrutinib sensitivity (Figure 1E). In addition, PAK1 positively regulates glycolysis and oxidative phosphorylation in CLL cells (Figure 1F and G). To verify the results of sequencing and further explore the role of PAK1 in CLL, B-cells from healthy volunteers and PBMCs from CLL patients were collected. The level of PAK1 mRNA expression was significantly higher in CLL primary cells than in B-cells from healthy volunteers (Figure 1H). Kaplan-Meier survival analysis of qRT-PCR data confirmed that patients with high PAK1 expression had a significantly lower OS (Figure 1I). IPA-3, the small molecular inhibitor of PAK1 suppressed the proliferation of ibrutinib-resistant and parental CLL cells in a dose-dependent manner. The combination of IPA-3 and ibrutinib exerted potent cell growth inhibition (Figure 1J), and the combination index (CI) calculated using the CompuSyn software confirmed the synergistic effect (CI<1) of this combinatorial therapy (Figure 1K). Conclusions: In the current study, we have provided a genome-wide view of alterations in 3D chromatin organization between ibrutinib-resistant and parental CLL cells and confirmed the oncogenic role of PAK1 in CLL. Most importantly, our research provides promising therapeutic targets for overcoming ibrutinib resistance. In particular, the treatment of CLL patients with a combination of IPA-3 and ibrutinib may improve clinical outcomes. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 500-500
Author(s):  
Michelle Ng ◽  
Lonneke Verboon ◽  
Hasan Issa ◽  
Raj Bhayadia ◽  
Oriol Alejo ◽  
...  

Abstract The noncoding genome presents a largely untapped source of biological insights, including tens of thousands of long noncoding RNA (lncRNA) loci. While some produce bona fide lncRNAs, others exert transcript-independent cis-regulatory effects, and the lack of predictive features renders their mechanistic dissection highly challenging. Here, we describe CTCF-enriched lncRNA loci (C-LNC) as a putative new subclass of functional genetic elements exemplified by MYNRL15 - myeloid leukemia noncoding regulatory locus on chromosome 15. Initially identified by an expression-guided CRISPRi screen of hematopoietic stem and progenitor (HSPC) / acute myeloid leukemia (AML) lncRNA signatures (480 genes, 1545 sgRNAs), we found MYNRL15 dependency in myeloid leukemia cells of diverse genetic backgrounds. Interestingly, cis and trans perturbation approaches revealed both the MYNRL15 transcript and its flanking protein-coding genes to be dispensable. High density CRISPR tiling of a 15 kb area centered on MYNRL15 (1613 sgRNAs) instead uncovered two crucial, candidate cis-regulatory DNA elements in the locus, which drive the MYNRL15 perturbation phenotype. To determine the molecular basis of MYNRL15 dependence, we performed transcriptome, chromatin conformation, chromatin accessibility, and CTCF profiling. RNA-sequencing established MYNRL15's involvement in maintaining key cancer dependency pathways (e.g. cell cycle, ribosome, spliceosome). Further, MYNRL15 perturbation associated with the coordinated dysregulation of several chromosome 15 neighbourhoods, and formation of a long-range chromatin interaction between the locus and the base of a distal loop, as detected via next-generation Capture-C. The gained interaction was accompanied by diffuse gains in chromatin accessibility across the distal interaction sites (ATAC-seq) as well as reduced CTCF occupancy at the MYRNL15 locus (CTCF CUT&RUN), altogether indicating the 3D re-organization of chromosome 15 following MYNRL15 perturbation. Integrative analysis of the chromatin conformation and transcriptome data, combined with a small CRISPR-Cas9 knockout screen of protein-coding genes from the gained interaction region (29 genes, 149 sgRNAs), pinpointed two potent cancer dependency genes that are located in the region and downregulated following MYNRL15 perturbation: namely, WDR61 and IMP3. Individual knockout of both genes robustly depleted myeloid leukemia cells, recapitulating the MYNRL15 perturbation phenotype and positioning WDR61 and IMP3 as its regulatory targets. Importantly, in primary cells, MYNRL15 perturbation eradicated AML blasts while sparing 50-60% of CD34 + HSPCs in vitro, and reduced patient-derived AML xenografts up to 10-fold in vivo, indicating a potential therapeutic window. Having implicated MYNRL15 in 3D genome organization and demonstrated its role in myeloid leukemia cells, we explored whether MYNRL15 may belong to a sub-category of biologically relevant lncRNA loci that have thus far been overlooked due to their lack of transcript-specific functions. Remarkably, elevated CTCF density (e.g. number of CTCF binding sites per kb of gene length) distinguishes MYNRL15 and 531 other lncRNA loci in K562 cells, of which 43-54% associate with genetic subgroups and/or survival in AML patient cohorts, and 18.4% are functionally required for leukemia maintenance as determined by CRISPR-Cas9 screening. The latter hit identification rate represents a substantial improvement over typical lncRNA essentiality screens (which range from 2-6%) - illustrating the effectiveness of CTCF density metrics in refining functional lncRNA candidate lists, and underlining the relevance such loci hold for AML and cancer pathophysiology in general. Curated C-LNC catalogs in other cell types will facilitate the search for noncoding oncogenic vulnerabilities in AML and other malignancies. Figure 1 Figure 1. Disclosures Reinhardt: Celgene Corporation: Consultancy; Novartis: Consultancy; Bluebird Bio: Consultancy; Janssen: Consultancy; CLS Behring: Research Funding; Roche: Research Funding. Klusmann: Bluebird Bio: Consultancy; Novartis: Consultancy; Roche: Consultancy; Jazz Pharmaceuticals: Consultancy.


2021 ◽  
Author(s):  
Gang Cao ◽  
Da Lin ◽  
Weize Xu ◽  
Ping Hong ◽  
Chengchao Wu ◽  
...  

Abstract The highly organized three-dimensional genome is crucial for gene transcription. However, it remains elusive how the order of the genome architecture related to its function. Here, we developed a single-cell Hi-C method and proposed TAD “degree of disorder” as a measure of genome organizational patterns, which is correlated with the chromatin epigenetic states, gene expression and co-regulation, and chromatin structure variability in individual cells. Upon Mycobacterium tuberculosis infection, NF-κB enters into the nucleus, binds to the target genome regions and initiates systematic chromatin conformation reorganization. Furthermore, we identified a remote NF-κB enriched enhancer promotes the expression of PD-L1 through chromatin loop, which could be a potential anti-tuberculosis and even anti-tumor therapeutic target. The integrated Hi-C, eQTL, and GWAS analysis depicted the atlas of the long-range target genes of tuberculosis susceptible loci. Among which SNP rs1873613 is located in the anchor of a dynamic chromatin loop with LRRK2, whose inhibitor AdoCbl could be an anti-tuberculosis drug candidate. Our study provides comprehensive resources for the 4D genome of immunocytes and sheds insights into the genome organization order and the coordinated gene transcription.


2021 ◽  
Author(s):  
Siqi Shen ◽  
Ye Zheng ◽  
Sunduz Keles

Quantitative tools are needed to leverage the unprecedented resolution of single-cell high-throughput chromatin conformation (scHi-C) data and to integrate it with other single-cell data modalities. We present single-cell gene associating domain (scGAD) scores as a dimension reduction and exploratory analysis tool for scHi-C data. scGAD enables summarization at the gene level while accounting for inherent gene-level genomic biases. Low-dimensional projections with scGAD capture clustering of cells based on their 3D structures. scGAD enables identifying genes with significant chromatin interactions within and between cell types. We further show that scGAD facilitates the integration of scHi-C data with other single-cell data modalities by enabling its projection onto reference low-dimensional embeddings.


2021 ◽  
Author(s):  
Elizabeth Ing-Simmons ◽  
Nick Machnik ◽  
Juan M Vaquerizas

We previously presented Comparison of Hi-C Experiments using Structural Similarity (CHESS), an approach that applies the concept of the structural similarity index (SSIM) to Hi-C matrices, and demonstrated that it could be used to identify both regions with similar 3D chromatin conformation across species, and regions with different chromatin conformation in different conditions. In contrast to the claim of Lee et al. that the SSIM output of CHESS is independent of the input data, here we confirm that SSIM depends on both local and global properties of the input Hi-C matrices. We provide two approaches for using CHESS to highlight regions of differential genome organisation for further investigation, and expanded guidelines for choosing appropriate parameters and controls for these analyses.


Sign in / Sign up

Export Citation Format

Share Document