pyroelectric detector
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 18)

H-INDEX

19
(FIVE YEARS 1)

Author(s):  
Seongchong Park ◽  
Dong-Hoon Lee ◽  
Kee Suk Hong

Abstract In case the primary realization of the spectral responsivity scale is not conducted at all target wavelengths but at only a small part of them, one needs to extrapolate values at the specific wavelengths to an extended range. In this work, we present a fully experimental procedure to extrapolate a single value of spectral responsivity at 633 nm into the whole working wavelength range (250 – 1100) nm of Si photodiodes. It is based on spectral responsivity comparison between a Si trap detector and a low-NEP pyroelectric detector of nearly flat spectral response. For this purpose, we developed a setup specialized to compare a Si-trap detector of dc-current output with a pyroelectric detector of ac-voltage output by using a modulated probing light source and a monitoring technique. To keep the probing light chopped even for the dc-photocurrent readout, we adopted a low chopping frequency of 4 Hz and a triggered readout for the Si-trap detector, which leads to a speedy comparison between the Si-trap detector and the pyroelectric detector. For the reference pyroelectric detector, we characterized the spectral absorptivity of the black-coating and the nonlinearity of the lock-in amplifier readout. Compiling all the required information, the spectral responsivity of the Si trap detector could be measured with the minimum uncertainty of 0.3 % (k = 2), which was validated by comparing with that of our previous method based on a numerical extrapolation.


2021 ◽  
Author(s):  
Igor Klyuchnyk ◽  
Alexander Bondarenko ◽  
Pavlo Galkin ◽  
Lydmila Golovkina ◽  
Yuriy Khoroshaylo ◽  
...  

Author(s):  
Zhiqing Liang ◽  
Xing Zheng ◽  
Guanting Li ◽  
Ziji Liu ◽  
Yadong Jiang ◽  
...  

2021 ◽  
Vol 11 (15) ◽  
pp. 7011
Author(s):  
Oleg V. Minin ◽  
Jaime Calvo-Gallego ◽  
Yahya M. Meziani ◽  
Igor V. Minin

An infrared (IR) pyroelectric detector was investigated for terahertz (THz) detection using the principle of the terajet effect, which focuses the beam beyond the diffraction limit. The terahertz beam was coupled to the detector’s optical window through a two-wavelength-dimension dielectric cubic particle-lens based on the terajet effect. We experimentally demonstrate an enhancement of about 6 dB in the sensitivity under excitation of 0.2 THz without degradation of the noise equivalent power value. The results show that the proposed method could be applied to increase the sensitivity of various commercial IR sensors for THz applications that do not require modification of the internal structure, and it may apply also to acoustics and plasmonic detectors.


2021 ◽  
pp. 130437
Author(s):  
Doris Keh Ting Ng ◽  
Chong Pei Ho ◽  
Linfang Xu ◽  
Weiguo Chen ◽  
Yuan Hsing Fu ◽  
...  

2021 ◽  
Vol 73 (05) ◽  
pp. 41-43
Author(s):  
Emeakpo Ojonah

While the world is transitioning into a greener and less-carbon-rich energy source, the fact remains that there is a growing need for exploration and production of hydrocarbons in previously untapped resources. These frontier reservoirs, while extremely hot, are prolific and make the footprint of the exploration activity much smaller than shallower drilling, which would require many more wells to deliver the same amount of hydrocarbon. These frontier wells, classified as high-pressure/high-temperature (HP/HT) wells, are defined as wells with reservoir or bottomhole temperatures higher than 300°F and which require pressure-control equipment with a rating above 10,000 psi. HP/HT wells can be found offshore in the North Sea and Gulf of Mexico, or on land—as seen recently in the Gongola Basin. Fluid identification, which is a critical process in fluid sampling, continues to be a challenge in temperatures above 350°F. At temperatures up to 450°F, fluid identification is currently achieved by bubblepoint and compressibility measurements, which cannot quantitatively measure contamination levels of the subject sample fluid. A possible solution to this problem would involve using pyroelectric detectors in the process of estimating a property of a downhole fluid. The method and apparatus in this approach involves exposing a fluid to modulated light downhole and sensing changes in the intensity of infrared radiation from the downhole fluid, to estimate the level of filtrate contamination and other properties. The pyroelectric detector senses changes in the intensity of light by con-verting the transient changes in temperature of its detector and performs the spectroscopic fluid analysis by optically filtering the light allowed to impinge on it, converting the changes in temperature of the pyroelectric detector to a signal which can then be used to estimate the property of the downhole fluid. If successfully implemented, this would enable the wireline-logging industry to develop an optical fluid analyser capable of quantitatively measuring fluid contamination levels in high-temperature (greater than 300°F) environments. Theory Pyroelectric infrared detectors (PIR) convert the changes in incoming infrared light to electric signals. Pyroelectric materials are characterized by having spontaneous electric polarization, which is altered by temperature changes as infrared light illuminates the elements. Pyroelectric detectors (Fig. 1) are thermal detectors, meaning they produce a signal in response to a change in their temperature. Below a case temperature (Tc) known as the Curie point, ferroelectric materials such as lithium tantalate exhibit a large spontaneous electrical polarization. If the temperature of such a material is altered, for example by incident radiation, the polarization changes. This change in polarization may be observed as an electrical signal when electrodes are placed on opposite faces of a thin slice of the material to form a capacitor. When the polarization changes, if the external impedance is comparatively high, the charges induced in the electrodes can be made to produce a voltage across the slice. The sensor will only produce an electrical output signal when the temperature changes; that is, when the level of incident-radiation changes.


Sign in / Sign up

Export Citation Format

Share Document