human osteoblast
Recently Published Documents


TOTAL DOCUMENTS

896
(FIVE YEARS 85)

H-INDEX

73
(FIVE YEARS 6)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 451
Author(s):  
Hermizi Hapidin ◽  
Nor Munira Hashim ◽  
Mohamad Zahid Kasiram ◽  
Hasmah Abdullah

Background: This study investigates the effect of tannic acid (TA) combined with pamidronate (PAM) on a human osteoblast cell line. Methods: EC50 for TA, PAM, and different combination ratios of TA and PAM (25:75, 50:50, 75:25) were measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The combination index value was utilized to analyze the degree of drug interaction, while trypan blue assay was applied to analyze the cells proliferation effect. The mineralization and detection of bone BSP and Osx genes were determined via histochemical staining and PCR test, respectively. Results: The EC50 of osteoblasts treated with TA and a 75:25 ratio of TA and PAM were more potent with lower EC50 at 0.56 µg/mL and 0.48 µg/mL, respectively. The combination of TA and PAM (75:25) was shown to have synergistic interaction. On Day 7, both TA and PAM groups showed significantly increased proliferation compared with control and combination groups. On Day 7, both the TA and combination-treated groups demonstrated a higher production of calcium deposits than the control and PAM-treated groups. Moreover, on Day 7, the combination-treated group showed a significantly higher expression of BSP and Osx genes than both the TA and PAM groups. Conclusion: Combination treatment of TA and PAM at 75:25 ameliorated the highest enhancement of osteoblast proliferation and mineralization as well as caused a high expression of BSP and Osx genes.


2021 ◽  
Vol 210 ◽  
pp. 110109
Author(s):  
Cherng-Jyh Ke ◽  
Kuo-Hui Chiu ◽  
Ching-Yun Chen ◽  
Chiung-Hua Huang ◽  
Chun-Hsu Yao

2021 ◽  
Vol 22 (17) ◽  
pp. 9335
Author(s):  
Petra Chocholata ◽  
Vlastimil Kulda ◽  
Jana Dvorakova ◽  
Monika Supova ◽  
Margit Zaloudkova ◽  
...  

Bone tissue engineering tries to simulate natural behavior of hard tissues. This study aimed to produce scaffolds based on polyvinyl alcohol (PVA) and hyaluronic acid (HA) with hydroxyapatite (HAp) incorporated in two different ways, by in situ synthesis and physical mixing of pre-prepared HAp. In situ synthesis resulted in calcium deficient form of HAp with lower crystallinity. The proliferation of human osteoblast-like cells MG-63 proved to be better in the scaffolds with in situ synthesized HAp compared to those with physically mixed pre-prepared HAp. For scaffolds with PVA/HA/HAp ratio 3:1:2, there was significantly higher initial adhesion (p = 0.0440), as well as the proliferation in the following days (p < 0.001). It seemed to be advantageous improve the properties of the scaffold by in situ synthesizing of HAp directly in the organic matrix.


2021 ◽  
pp. 413-423
Author(s):  
M LUKASZEWSKA-KUSKA ◽  
P WIRSTLEIN ◽  
R MAJCHROWSKI ◽  
B DOROCKA-BOBKOWSKA

The objective of this study was to evaluate and compare titanium surfaces: machined (MA); sintered ceramic-blasted (HAS); sintered ceramic-blasted and acid-etched (HAS DE) and to determine the effects of surface topography, roughness and chemical composition on human osteoblast cell reaction. Titanium surface samples were analyzed with respect to surface chemical composition, topography, and roughness. The effects of material surface characteristics on osteoblasts was examined by analyzing osteoblast morphology, viability and differentiation. Osteoblasts cultured on these materials had attached, spread and proliferated on every sample. The viability of osteoblasts cultured on HAS and HAS DE samples increased more intensively in time comparing to MA sample. The viability of osteoblast cultured on HAS samples increased more intensively in the early phases of culture while for cells cultured on HAS DE the cells viability increased later in time. Alkaline phosphate activity was the highest for the cells cultured on HAS sample and statistically higher than for the MA sample. The least activity occurred on the smooth MA sample along with the rougher HAS DE samples. All the examined samples were found to be biocompatible, as indicated by cell attachment, proliferation, and differentiation. Titanium surfaces modification improved the dynamics of osteoblast viability increase. Osteoblast differentiation was found to be affected by the etching procedure and presence of Ca and P on the surface.


2021 ◽  
Vol 3 (3) ◽  
pp. 204-211
Author(s):  
Nahum Rosenberg ◽  
◽  
Orit Rosenberg ◽  
Jacob Halevi Politch ◽  
Haim Abramovich ◽  
...  

Introduction: Biomechanical stimulation of cultured human osteoblast-like cells, which is based on controlled mechanical vibration, has been previously indicated, but the exact mechanical parameters that are effective for cells' proliferation enhancement are still elusive due to the lack of direct data recordings from the stimulated cells in culture. Therefore, we developed a low friction tunable system that enables recording of a narrow range of mechanical parameters, above the infrasonic spectrum, that applied uniformly to human osteoblast-like cells in monolayer culture, aiming to identify a range of mechanical parameters that are effective to enhance osteoblast proliferation in vitro. Methods: Human osteoblast-like cells in explant monolayer culture samples were exposed to mechanical vibration in the 10-70Hz range of frequencies for two minutes, in four 24 hours intervals. Cell numbers in culture, cellular alkaline phosphatase activity (a marker of cell maturation), and lactate dehydrogenase activity in culture media (representing cell death) were measured after the mechanical stimulation protocol application and compared statistically to the control cell cultures kept in static conditions. The cell proliferation was deduced from cell number in culture and cell death measurements. Results: We found that 50-70 Hz of vibration frequency protocol (10-30 μm of maximal displacement amplitude, 0.03g of peak-to-peak acceleration) is optimal for enhancing cells' proliferation(p<0.05), with a parallel decrease of their maturation (p<0.01). Discussion: We detected the optimal mechanical parameters of excitation protocol for induction of osteoblast proliferation in vitro by a mechanical platform, which can be used as a standardized method in the research of mechanotransduction in human osteoblast.


Author(s):  
Sema Misir

Licorice, also known as the root of Glycyrrhiza glabra, has been used for many years in traditional medicine to treat various diseases. Licorice root has remarkable pharmacological properties and these biological effects are predominantly attributed to its content of polyphenols and flavonoids. The aim of this study was to determine the proliferative effect of licorice root extract on human osteoblast cells. The study groups were exposed to various concentrations of licorice root extract on 31.25, 62.5, 250, 500, 1000 μg/mL for 24, and 48 h. The proliferative effect of the extract on human osteoblast cells was assessed using the MTT assay. After 24 and 48 h, cell proliferation of groups treated were increased statistically significant compared to the control cells, and also all concentrations showing no cytotoxic effects on osteoblast cells. Phytomedical applications of licorice root may represent a promising approach in the treatment of periodontal regeneration and osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document