monomeric form
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 32)

H-INDEX

30
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. V. Gavshina ◽  
N. K. Marynich ◽  
M. G. Khrenova ◽  
I. D. Solovyev ◽  
A. P. Savitsky

AbstractBiphotochromic fluorescent protein SAASoti contains five cysteine residues in its sequence and a V127T point mutation transforms it to the monomeric form, mSAASoti. These cysteine residues are located far from the chromophore and might control its properties only allosterically. The influence of individual, double and triple cysteine substitutions of mSAASoti on fluorescent parameters and phototransformation reactions (irreversible green-to-red photoconversion and reversible photoswitching) is studied. A set of mSAASoti mutant forms (C21N, C117S, C71V, C105V, C175A, C21N/C71V, C21N/C175A, C21N/C71G/C175A) is obtained by site-directed mutagenesis. We demonstrate that the C21N variant exists in a monomeric form up to high concentrations, the C71V substitution accelerates photoconversion to the red form and the C105V variant has the maximum photoswitching rate. All C175A-containing variants demonstrate different photoswitching kinetics and decreased photostability during subsequent switching cycles compared with other considered systems. Classical molecular dynamic simulations reveal that the F177 side chain located in the vicinity of the chromophore is considerably more flexible in the mSAASoti compared with its C175A variant. This might be the explanation of the experimentally observed slowdown the thermal relaxation rate, i.e., trans–cis isomerization of the chromophore in mSAASoti upon C175A substitution.


2021 ◽  
Author(s):  
Philipp Radler ◽  
Natalia Baranova ◽  
Paulo Caldas ◽  
Christoph Sommer ◽  
Mar López-Pelegrín ◽  
...  

Bacterial cell division is coordinated by the Z-ring, a cytoskeletal structure of treadmilling filaments of FtsZ and their membrane anchors, FtsA and ZipA. For divisome maturation and initiation of constriction, the widely conserved actin-homolog FtsA plays a central role, as it links downstream cell division proteins in the membrane to the Z-ring in the cytoplasm. According to the current model, FtsA initiates cell constriction by switching from an inactive polymeric conformation to an active monomeric form, which then stabilizes the Z-ring and recruits downstream proteins such as FtsN. However, direct biochemical evidence for this mechanism is missing so far. Here, we used biochemical reconstitution experiments in combination with quantitative fluorescence microscopy to study the mechanism of divisome activation in vitro. By comparing the properties of wildtype FtsA and FtsA R286W, a gain-of-function mutant thought to mimic its active state, we found that active FtsA outperforms the wildtype protein in replicating FtsZ treadmilling dynamics, filament stabilization and FtsN recruitment. We could attribute these differences to a faster membrane exchange of FtsA R286W as well as its higher packing density below FtsZ filaments. Using FRET microscopy, we also show that binding of FtsN does not compete with, but promotes FtsA self-interaction. Together, our findings shed new light on the assembly and activation of the bacterial cell division machinery and the mechanism of how FtsA initiates cell constriction.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5864
Author(s):  
Costanza Vanni ◽  
Anne Bodlenner ◽  
Marco Marradi ◽  
Jérémy P. Schneider ◽  
Maria de los Angeles Ramirez ◽  
...  

Among carbohydrate-processing enzymes, Jack bean α-mannosidase (JBα-man) is the glycosidase with the best responsiveness to the multivalent presentation of iminosugar inhitopes. We report, in this work, the preparation of water dispersible gold nanoparticles simultaneously coated with the iminosugar deoxynojirimycin (DNJ) inhitope and simple monosaccharides (β-d-gluco- or α-d-mannosides). The display of DNJ at the gold surface has been modulated (i) by using an amphiphilic linker longer than the aliphatic chain used for the monosaccharides and (ii) by presenting the inhitope, not only in monomeric form, but also in a trimeric fashion through combination of a dendron approach with glyconanotechnology. The latter strategy resulted in a strong enhancement of the inhibitory activity towards JBα-man, with a Ki in the nanomolar range (Ki = 84 nM), i.e., more than three orders of magnitude higher than the monovalent reference compound.


2021 ◽  
Vol 22 (18) ◽  
pp. 9682
Author(s):  
Abdullah Md. Sheikh ◽  
Yasuko Wada ◽  
Shatera Tabassum ◽  
Satoshi Inagaki ◽  
Shingo Mitaki ◽  
...  

Cystatin C (CST3) is an endogenous cysteine protease inhibitor, which is implicated in cerebral amyloid angiopathy (CAA). In CAA, CST3 is found to be aggregated. The purpose of this study is to investigate whether this aggregation could alter the activity of the protein relevant to the molecular pathology of CAA. A system of CST3 protein aggregation was established, and the aggregated protein was characterized. The results showed that CST3 aggregated both at 80 °C without agitation, and at 37 °C with agitation in a time-dependent manner. However, the levels of aggregation were high and appeared earlier at 80 °C. Dot-blot immunoassay for oligomers revealed that CST3 could make oligomeric aggregates at the 37 °C condition. Electron microscopy showed that CST3 could make short fibrillary aggregates at 37 °C. Cathepsin B activity assay demonstrated that aggregated CST3 inhibited the enzyme activity less efficiently at pH 5.5. At 7.4 pH, it lost the inhibitory properties almost completely. In addition, aggregated CST3 did not inhibit Aβ1-40 fibril formation, rather, it slightly increased it. CST3 immunocytochemistry showed that the protein was positive both in monomeric and aggregated CST3-treated neuronal culture. However, His6 immunocytochemistry revealed that the internalization of exogenous recombinant CST3 by an astrocytoma cell culture was higher when the protein was aggregated compared to its monomeric form. Finally, MTT cell viability assay showed that the aggregated form of CST3 was more toxic than the monomeric form. Thus, our results suggest that aggregation may result in a loss-of-function phenotype of CST3, which is toxic and responsible for cellular degeneration.


2021 ◽  
Vol 28 ◽  
Author(s):  
Javier Rojo ◽  
Pedro M. Nieto ◽  
José Luis de Paz

: Langerin is a C-type Lectin expressed at the surface of Langerhans cells, which play a pivotal role in protecting organisms against pathogen infections. To address this aim, Langerin presents at least two recognition sites, one Ca2+-dependent and another one independent, capable of recognizing a variety of carbohydrate ligands. In contrast to other lectins, Langerin recognizes sulfated glycosaminoglycans (GAGs), a family of complex and heterogeneous polysaccharides present in the cell membrane and the extracellular matrix at the interphase generated in the trimeric form of Langerin but absent in the monomeric form. The complexity of these oligosaccharides has impeded the development of well-defined monodisperse structures to study these interaction processes. However, in the last few decades, an improvement of synthetic developments to achieve the preparation of carbohydrate multivalent systems mimicking the GAGs has been described. Despite all these contributions, very few examples are reported where the GAG multivalent structures are used to evaluate the interaction with Langerin. These molecules should pave the way to explore these GAG-Langerin interactions.


2021 ◽  
pp. 1-18
Author(s):  
Altair B. Dos Santos ◽  
Line K. Skaanning ◽  
Eyd Mikkelsen ◽  
Cesar R. Romero-Leguizamón ◽  
Morten P. Kristensen ◽  
...  

Background: Parkinson’s disease (PD) is a neurodegenerative disorder associated with insoluble pathological aggregates of the protein α-synuclein. While PD is diagnosed by motor symptoms putatively due to aggregated α-synuclein-mediated damage to substantia nigra (SN) neurons, up to a decade before motor symptom appearance, patients exhibit sleep disorders (SDs). Therefore, we hypothesized that α-synuclein, which can be present in monomeric, fibril, and other forms, has deleterious cellular actions on sleep-control nuclei. Objective: We investigated whether native monomer and fibril forms of α-synuclein have effects on neuronal function, calcium dynamics, and cell-death-induction in two sleep-controlling nuclei: the laterodorsal tegmentum (LDT), and the pedunculopontine tegmentum (PPT), as well as the motor-controlling SN. Methods: Size exclusion chromatography, Thioflavin T emission, and circular dichroism spectroscopy were used to isolate structurally defined forms of recombinant, human α-synuclein. Neuronal and viability effects of characterized monomeric and fibril forms of α-synuclein were determined on LDT, PPT, and SN neurons using electrophysiology, calcium imaging, and neurotoxicity assays. Results: In LDT and PPT, both forms of α-synuclein induced excitation and increased calcium, and the monomeric form heightened putatively excitotoxic neuronal death, whereas, in the SN we saw inhibition, decreased intracellular calcium, and monomeric α-synuclein was not associated with heightened cell death. Conclusion: Nucleus-specific differential effects suggest mechanistic underpinnings of SDs’ prodromal appearance in PD. While speculative, we hypothesize that the monomeric form of α-synuclein compromises functionality of sleep-control neurons, leading to the presence of SDs decades prior to motor dysfunction.


2021 ◽  
Author(s):  
Wajihul Hasan Khan ◽  
Nida Khan ◽  
Avinash Mishra ◽  
Surbhi Gupta ◽  
Vikrant Bansode ◽  
...  

Diagnostics has played a significant role in effective management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nucleocapsid protein (N protein) is the primary antigen of the virus for development of sensitive diagnostic assays. Thus far, limited knowledge exists about the antigenic properties of the N protein. In this paper, we demonstrate the significant impact of dimerization of SARS-CoV-2 nucleocapsid protein on sensitivity of enzyme-linked immunosorbent assay (ELISA) based diagnostics of COVID-19. The expressed purified protein from E.coli consists of two forms, dimeric and monomeric forms, which have been further characterized by biophysical and immunological means. Indirect ELISA indicated elevated susceptibility of the dimeric form of the nucleocapsid protein for identification of protein-specific monoclonal antibody as compared to the monomeric form of the protein. These findings have also been confirmed with the modelled structure of monomeric and dimeric nucleocapsid protein via HHPred software and its solvent accessible surface area, which indicates higher stability and antigenicity of the dimeric type as compared to the monomeric form. It is evident that use of the dimeric form will increase the sensitivity of the current nucleocapsid dependent ELISA for rapid COVID-19 diagnostic. Further, the results indicate that monitoring and maintaining of the monomer-dimer composition is critical for accurate and robust diagnostics.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11484
Author(s):  
Tomaž Žagar ◽  
Miha Pavšič ◽  
Aljaž Gaber

The cell-surface protein EpCAM is a carcinoma marker utilized in diagnostics and prognostics, and a promising therapeutic target. It is involved in nuclear signaling via regulated intramembrane proteolysis (RIP). Many aspects of this process are not fully understood, including the events at the molecular level leading to the exposure of cleavage sites, buried at the dimerization interface. To investigate the effect of dimer stability on cleavage susceptibility we prepared two mutants of human EpCAM ectodomain: a monomeric form, and a disulfide-stabilized dimeric form. We show that the disulfide-stabilized dimer is resistant to tumor necrosis factor-α-converting enzyme (TACE) cleavage, while the monomeric form is more susceptible than the predominantly dimeric wild type. This provides experimental evidence that the oligomeric state of EpCAM is a determinant in RIP and demonstrates the usefulness of the oligomeric state-specific mutants in investigations of EpCAM biological function.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 181
Author(s):  
Francesca Zonta ◽  
Christian Borgo ◽  
Camila Paz Quezada Meza ◽  
Ionica Masgras ◽  
Andrea Rasola ◽  
...  

CK2 is a Ser/Thr protein kinase overexpressed in many cancers. It is usually present in cells as a tetrameric enzyme, composed of two catalytic (α or α’) and two regulatory (β) subunits, but it is active also in its monomeric form, and the specific role of the different isoforms is largely unknown. CK2 phosphorylates several substrates related to the uncontrolled proliferation, motility, and survival of cancer cells. As a consequence, tumor cells are addicted to CK2, relying on its activity more than healthy cells for their life, and exploiting it for developing multiple oncological hallmarks. However, little is known about CK2 contribution to the metabolic rewiring of cancer cells. With this study we aimed at shedding some light on it, especially focusing on the CK2 role in the glycolytic onco-phenotype. By analyzing neuroblastoma and osteosarcoma cell lines depleted of either one (α) or the other (α’) CK2 catalytic subunit, we also aimed at disclosing possible pro-tumor functions which are specific of a CK2 isoform. Our results suggest that both CK2 α and α’ contribute to cell proliferation, survival and tumorigenicity. The analyzed metabolic features disclosed a role of CK2 in tumor metabolism, and suggest prominent functions for CK2 α isoform. Results were also confirmed by CK2 pharmacological inhibition. Overall, our study provides new information on the mechanism of cancer cells addiction to CK2 and on its isoform-specific functions, with fundamental implications for improving future therapeutic strategies based on CK2 targeting.


2021 ◽  
Author(s):  
Nathan Davison ◽  
Emanuele Falbo ◽  
Paul G Waddell ◽  
Thomas Penfold ◽  
Erli Lu
Keyword(s):  

Methyllithium (MeLi) is the parent archetypical organolithium complex and its monomeric form is vital for understanding the ubiquitous organolithium-mediated reactions. However, despite being pursued for decades, to the best of...


Sign in / Sign up

Export Citation Format

Share Document