maximum power density
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 46)

H-INDEX

19
(FIVE YEARS 5)

2021 ◽  
Vol 5 (12) ◽  
pp. 317
Author(s):  
Yusuke Takahashi ◽  
Akinari Iwahashi ◽  
Yasumitsu Matsuo ◽  
Hinako Kawakami

Biomaterials attract a lot of attention as next-generation materials. Especially in the energy field, fuel cells based on biomaterials can further develop clean next-generation energy and are focused on with great interest. In this study, solid-state hydrogen fuel (PSII–chitin composite) composed of the photosystem II (PSII) and hydrated chitin composite was successfully created. Moreover, a biofuel cell consisting of the electrolyte of chitin and the hydrogen fuel using the PSII–chitin composite was fabricated, and its characteristic feature was investigated. We found that proton conductivity in the PSII–chitin composite increases by light irradiation. This result indicates that protons generate in the PSII–chitin composite by light irradiation. It was also found that the biofuel cell using the PSII–chitin composite hydrogen fuel and the chitin electrolyte exhibits the maximum power density of 0.19 mW/cm2. In addition, this biofuel cell can drive an LED lamp. These results indicate that the solid-state biofuel cell based on the bioelectrolyte “chitin” and biofuel “the PSII–chitin composite” can be realized. This novel solid-state fuel cell will be helpful to the fabrication of next-generation energy.


Author(s):  
Junqi Zhang ◽  
Zheng Chen ◽  
Changjiang Liu ◽  
Jianxun Li ◽  
Xingjuan An ◽  
...  

Background: Microbial fuel cells (MFCs) are a novel bioelectrochemical devices that can use exoelectrogens as biocatalyst to convert various organic wastes into electricity. Among them, acetate, a major component of industrial biological wastewater and by-product of lignocellulose degradation, could release eight electrons per mole when completely degraded into CO2 and H2O, which has been identified as a promising carbon source and electron donor. However, Shewanella oneidensis MR-1, a famous facultative anaerobic exoelectrogens, only preferentially uses lactate as carbon source and electron donor and could hardly metabolize acetate in MFCs, which greatly limited Coulombic efficiency of MFCs and the capacity of bio-catalysis.Results: Here, to enable acetate as the sole carbon source and electron donor for electricity production in S. oneidensis, we successfully constructed three engineered S. oneidensis (named AceU1, AceU2, and AceU3) by assembling the succinyl-CoA:acetate CoA-transferase (SCACT) metabolism pathways, including acetate coenzyme A transferase encoded by ato1 and ato2 gene from G. sulfurreducens and citrate synthase encoded by the gltA gene from S. oneidensis, which could successfully utilize acetate as carbon source under anaerobic and aerobic conditions. Then, biochemical characterizations showed the engineered strain AceU3 generated a maximum power density of 8.3 ± 1.2 mW/m2 with acetate as the sole electron donor in MFCs. In addition, when further using lactate as the electron donor, the maximum power density obtained by AceU3 was 51.1 ± 3.1 mW/m2, which approximately 2.4-fold higher than that of wild type (WT). Besides, the Coulombic efficiency of AceU3 strain could reach 12.4% increased by 2.0-fold compared that of WT, which demonstrated that the engineered strain AceU3 can further utilize acetate as an electron donor to continuously generate electricity.Conclusion: In the present study, we first rationally designed S. oneidensis for enhancing the electron generation by using acetate as sole carbon source and electron donor. Based on synthetic biology strategies, modular assembly of acetate metabolic pathways could be further extended to other exoelectrogens to improve the Coulombic efficiency and broaden the spectrum of available carbon sources in MFCs for bioelectricity production.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3095
Author(s):  
Rumen I. Tomov ◽  
Thomas B. Mitchel-Williams ◽  
Eleonora Venezia ◽  
Michal Kawalec ◽  
Mariusz Krauz ◽  
...  

Single-step inkjet printing infiltration with doped ceria Ce0.9Ye0.1O1.95 (YDC) and cobalt oxide (CoxOy) precursor inks was performed in order to modify the properties of the doped ceria interlayer in commercial (50 × 50 × 0.5 mm3 size) anode-supported SOFCs. The penetration of the inks throughout the La0.8Sr0.2Co0.5Fe0.5O3−δ porous cathode to the Gd0.1Ce0.9O2 (GDC) interlayer was achieved by optimisation of the inks’ rheology jetting parameters. The low-temperature calcination (750 °C) resulted in densification of the Gd-doped ceria porous interlayer as well as decoration of the cathode scaffold with nanoparticles (~20–50 nm in size). The I–V testing in pure hydrogen showed a maximum power density gain of ~20% at 700 °C and ~97% at 800 °C for the infiltrated cells. The latter effect was largely assigned to the improvement in the interfacial Ohmic resistance due to the densification of the interlayer. The EIS study of the polarisation losses of the reference and infiltrated cells revealed a reduction in the activation polarisations losses at 700 °C due to the nano-decoration of the La0.8Sr0.2Co0.5Fe0.5O3−δ scaffold surface. Such was not the case at 800 °C, where the drop in Ohmic losses was dominant. This work demonstrated that single-step inkjet printing infiltration, a non-disruptive, low-cost technique, can produce significant and scalable performance enhancements in commercial anode-supported SOFCs.


2021 ◽  
Author(s):  
Tasneem Elmakki ◽  
Sifani Zavahir ◽  
Mona Gulied ◽  
Reem Azam ◽  
Peter Peter Kasak ◽  
...  

In the last decade, there has been an increased global need for finding bright solutions to tackle industrial wastes and emissions release. Herein, this work explores the utilization of a compact Reverse Electrodialysis (RED) system that transforms the chemical potential energy of mixing an ammonia based purified industrial wastewater stream (low concentration stream - LC), with an effluent high salinity RO brine stream (High concentration-HC) into viable electrical energy. The LC and HC streams are directed from ammonia production plants and seawater reverse osmosis desalination plants, respectively. The acquired electrical energy from this RED process is simultaneously used to power an Electrochemical (EC) system. The electrochemical system utilizes two critical waste streams produced from ammonia production plants. One being a wastewater stream that is purified in the anode chamber of the cell via the use of active chlorine species, and the other being the huge amount of emitted CO2 that is directed into the cathode chamber and there converted to value added chemicals. The purified wastewater stream coming out of the EC system is used as the aforementioned LC stream in the RED process, hence, forming an integrated RED-EC system that manages industrial waste streams, minimizes liquid discharge & CO2 emissions, and employs a sustainable internal energy production process. In this study, the RED system is first optimized to attain the maximum power density through exploring the influence of concentrate and dilute stream concentrations, compositions and flowrates. In addition, to the number of membrane pairs needed to produce desired voltages. The RED cell gave a maximum power density of 3.25 W.m-2 with 20 membrane pairs and a salinity gradient of 0.98M between a concentrated brine stream and a mixed NaCl/(NH4)2SO4 stream. Furthermore, around 15 cell pairs were needed to provide -1.5 V of energy to drive CO2 conversion to formate.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6608
Author(s):  
Zhengang Zhao ◽  
Fan Zhang ◽  
Yanhui Zhang ◽  
Dacheng Zhang

The micro direct methanol fuel cell (μDMFC) has attracted more and more attention in the field of new energy due to its simple structure, easy operation, and eco-friendly byproducts. In a μDMFC’s structure, the current collector plays an essential role in collecting the conduction current, and the rational distribution of gas and water. The choice of its material and flow fields would significantly impact the μDMFC’s performance. To this end, four different types of cathode current collector were prepared in this study. The materials selected were stainless steel (SS) and foam stainless steel (FSS), with the flow fields of hole-type and grid-type. The performance of the μDMFC with different types of cathode current collector was investigated by using polarization curves, electrochemical impedance spectroscopy (EIS), and discharging. The experimental results show that the maximum power density of μDMFC of the hole-type FSS cathode current collector is 49.53 mW/cm2 at 70 °C in the methanol solution of 1 mol/L, which is 115.72% higher than that of the SS collector. The maximum power density of the μDMFC with the grid-type FSS collector is 22.60 mW/cm2, which is 27.39% higher than that of the SS collector. The total impedance of the μDMFC of the FSS collector is significantly lower than that of the μDMFC of the SS collector, and the total impedance of the μDMFC with the hole-type flow field collector is lower than that of the grid-type flow field. The discharging of μDMFC with the hole-type FSS collector reaches its optimal value at 70 °C in the methanol solution of 1 mol/L.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1203
Author(s):  
Qirui Gong ◽  
Yanlin Ge ◽  
Lingen Chen ◽  
Shuangshaung Shi ◽  
Huijun Feng

Based on the established model of the irreversible rectangular cycle in the previous literature, in this paper, finite time thermodynamics theory is applied to analyze the performance characteristics of an irreversible rectangular cycle by firstly taking power density and effective power as the objective functions. Then, four performance indicators of the cycle, that is, the thermal efficiency, dimensionless power output, dimensionless effective power, and dimensionless power density, are optimized with the cycle expansion ratio as the optimization variable by applying the nondominated sorting genetic algorithm II (NSGA-II) and considering four-objective, three-objective, and two-objective optimization combinations. Finally, optimal results are selected through three decision-making methods. The results show that although the efficiency of the irreversible rectangular cycle under the maximum power density point is less than that at the maximum power output point, the cycle under the maximum power density point can acquire a smaller size parameter. The efficiency at the maximum effective power point is always larger than that at the maximum power output point. When multi-objective optimization is performed on dimensionless power output, dimensionless effective power, and dimensionless power density, the deviation index obtained from the technique for order preference by similarity to an ideal solution (TOPSIS) decision-making method is the smallest value, which means the result is the best.


2021 ◽  
Vol 21 (9) ◽  
pp. 4680-4684
Author(s):  
Dae-Hyeon Kwon ◽  
Jaebum Jeong ◽  
Yongju Lee ◽  
Jun-Kyu Park ◽  
Suwoong Lee ◽  
...  

Flexible triboelectric nanogenerators (TENGs) have attracted much attention because of its environmentally friendly, practical, and cost-producing advantages. In flexible TENGs, it is important to study the flexible electrodes in order to fabricate the fully flexible devices. Here, we compared electrical characteristics of the sponge porous polydimethylsiloxane (PDMS)-based flexible TENGs with two types of flexible electrodes, copper and carbon nanotube (CNT)-PDMS electrodes. The output voltage and maximum power density of sponge PDMS-based flexible TENGs with copper and CNTPDMS electrodes were compared. The voltage and power density of sponge PDMS-based flexible TENGs with CNT-PDMS electrodes were improved compare to those with copper electrodes. The output voltage and the maximum power density of sponge PDMS-based flexible TENGs with copper and CNT-PDMS electrodes increased 4 times and 7 times, respectively. It is attributed to higher electrical conductivity and stably flow electricity of CNT than those of copper.


REAKTOR ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 52-58
Author(s):  
Marcelinus Christwardana ◽  
Linda Aliffia Yoshi ◽  
J. Joelianingsih

This study demonstrates the feasibility of producing bioelectricity utilizing yeast microbial fuel cell (MFC) technology with sugarcane bagasse juice as a substrate. Yeast Saccharomyces cerevisiae was employed as a bio-catalyst in the production of electrical energy. Sugarcane bagasse juice can be used as a substrate in MFC yeast because of its relatively high sugar content. When yeast was used as a biocatalyst, and Yeast Extract, Peptone, D-Glucose (YPD) Medium was used as a substrate in the MFC in the acclimatization process, current density increased over time to reach 171.43 mA/m2 in closed circuit voltage (CCV), maximum power density (MPD) reached 13.38 mW/m2 after 21 days of the acclimatization process. When using sugarcane bagasse juice as a substrate, MPD reached 6.44 mW/m2 with a sugar concentration of about 5230 ppm. Whereas the sensitivity, maximum current density (Jmax), and apparent Michaelis-Menten constant (𝐾𝑚𝑎𝑝𝑝) from the Michaelis-Menten plot were 0.01474 mA/(m2.ppm), 263.76 mA/m2, and 13594 ppm, respectively. These results indicate that bioelectricity can be produced from sugarcane bagasse juice by Saccharomyces cerevisiae.Keywords: biomass valorization, biofuel cell, acclimatization, maximum power density, Michaelis-Menten constant


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1301
Author(s):  
Segundo Rojas-Flores ◽  
Santiago M. Benites ◽  
Magaly De La Cruz-Noriega ◽  
Luis Cabanillas-Chirinos ◽  
Fiorela Valdiviezo-Dominguez ◽  
...  

Global warming and the increase in organic waste from agro-industries create a major problem for the environment. In this sense, microbial fuel cells (MFC) have great potential for the generation of bioelectricity by using organic waste as fuel. This research produced low-cost MFC by using zinc and copper electrodes and taking blueberry waste as fuel. A peak current and voltage of 1.130 ± 0.018 mA and 1.127 ± 0.096 V, respectively, were generated. The pH levels were acid, with peak conductivity values of 233. 94 ± 0.345 mS/cm and the degrees Brix were descending from the first day. The maximum power density was 3.155 ± 0.24 W/cm2 at 374.4 mA/cm2 current density, and Cándida boidinii was identified by means of molecular biology and bioinformatics techniques. This research gives a new way to generate electricity with this type of waste, generating added value for the companies in this area and helping to reduce global warming.


Sign in / Sign up

Export Citation Format

Share Document