nanowire growth
Recently Published Documents


TOTAL DOCUMENTS

556
(FIVE YEARS 73)

H-INDEX

51
(FIVE YEARS 4)

Author(s):  
А.А. Корякин ◽  
Ю.А. Еремеев ◽  
С.В. Федина ◽  
В.В. Федоров

The growth mechanism of monolayer on the top facet of Ga-catalyzed GaAs and GaP nanowires is investigated. Within the framework of a theoretical model, the maximal monolayer coverage due to the material in the catalyst droplet, the nanowire growth rate and the content of group V atoms in the droplet are found depending on the growth conditions. The estimates of the phosphorus re-evaporation coefficient from neighboring nanowires and substrate are obtained by comparing the theoretical and experimental growth rate of Ga-catalyzed GaP nanowires.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012008
Author(s):  
S V Fedina ◽  
A A Koryakin ◽  
V V Fedorov ◽  
G A Sapunov ◽  
I S Mukhin

Abstract Self-catalyzed GaAs nanowires are synthesized by molecular beam epitaxy at various arsenic fluxes and growth temperatures. The growth of GaAs nanowires is simulated considering the kinetics of material transport inside the catalyst droplet. The re-evaporation coefficient of arsenic is estimated for the given growth conditions. Calculated nanowire growth rate is in satisfactory agreement with the experimental data.


2021 ◽  
pp. 163273
Author(s):  
Lulu Zheng ◽  
Edy Azrak ◽  
Ruiling Gong ◽  
Celia Castro ◽  
Sébastien Duguay ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Carina B Maliakkal ◽  
Daniel Jacobsson ◽  
Marcus Ulf Tornberg ◽  
Kimberly Dick

Abstract We study using in situ transmission electron microscopy the birth of GaAs nanowires from liquid Au-Ga catalysts on amorphous substrates. Lattice-resolved observations of the starting stages of growth are reported here for the first time. It reveals how the initial nanostructure evolves into a nanowire growing in a zincblende <111> or the equivalent wurtzite <0001> direction. This growth direction(s) is what is typically observed in most III-V and II-VI nanowires. However, the reason for this preferential nanowire growth along this direction is still a dilemma. Based on the videos recorded shortly after the nucleation of nanowires, we argue that the lower catalyst droplet-nanowire interface energy of the {111} facet when zincblende (or the equivalent {0001} facet in wurtzite) is the reason for this direction selectivity in nanowires.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3042
Author(s):  
Hafsa Khurshid ◽  
Rahana Yoosuf ◽  
Bashar Afif Issa ◽  
Atta G. Attaelmanan ◽  
George Hadjipanayis

Cobalt nanowires have been synthesized by electrochemical deposition using track-etched anodized aluminum oxide (AAO) templates. Nanowires with varying spacing-to-diameter ratios were prepared, and their magnetic properties were investigated. It is found that the nanowires’ easy magnetization direction switches from parallel to perpendicular to the nanowire growth direction when the nanowire’s spacing-to-diameter ratio is reduced below 0.7, or when the nanowires’ packing density is increased above 5%. Upon further reduction in the spacing-to-diameter ratio, nanowires’ magnetic properties exhibit an isotropic behavior. Apart from shape anisotropy, strong dipolar interactions among nanowires facilitate additional uniaxial anisotropy, favoring an easy magnetization direction perpendicular to their growth direction. The magnetic interactions among the nanowires were studied using the standard method of remanence curves. The demagnetization curves and Delta m (Δm) plots showed that the nanowires interact via dipolar interactions that act as an additional uniaxial anisotropy favoring an easy magnetization direction perpendicular to the nanowire growth direction. The broadening of the dipolar component of Δm plots indicate an increase in the switching field distribution with the increase in the nanowires’ diameter. Our findings provide an important insight into the magnetic behavior of cobalt nanowires, meaning that it is crucial to design them according to the specific requirements for the application purposes.


2021 ◽  
Author(s):  
Janusz Sadowski ◽  
Anna Kaleta ◽  
Serhii Kryvyi ◽  
Dorota Janaszko ◽  
Bogusława Kurowska ◽  
...  

Abstract Incorporation of Bi into GaAs-(Ga,Al)As-Ga(As,Bi) core-shell nanowires grown by molecular beam epitaxy is studied with transmission electron microscopy. Nanowires are grown on GaAs(100) substrates with Au-droplet assisted mode. Bi-doped shells are grown at low temperature (300 °C) with a close to stoichiometric Ga/As flux ratio. At low Bi fluxes, the Ga(As,Bi) shells are smooth, with Bi completely incorporated into the shells. Higher Bi fluxes (Bi/As flux ratio ~ 4%) led to partial segregation of Bi as droplets on the nanowires sidewalls, preferentially located at the nanowire segments with wurtzite structure. We demonstrate that such Bi droplets on the sidewalls act as catalysts for the growth of branches perpendicular to the GaAs trunks. Due to the tunability between zinc-blende and wurtzite polytypes by changing the nanowire growth conditions, this effect enables fabrication of branched nanowire architectures with branches generated from selected (wurtzite) nanowire segments.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2378
Author(s):  
Vladimir G. Dubrovskii

We present a growth model that describes the nanowire length and radius versus time in the absence of evaporation or scattering of semiconductor atoms (group III atoms in the case of III-V NWs) from the substrate, nanowire sidewalls or catalyst nanoparticle. The model applies equally well to low-temperature metal-catalyzed or selective area growth of elemental or III-V nanowires on patterned substrates. Surface diffusion transport and radial growth on the nanowire sidewalls are carefully considered under the constraint of the total material balance, yielding some new effects. The nanowire growth process is shown to proceed in two steps. In the first step, the nanowire length increases linearly with time and is inversely proportional to the nanowire radius squared and the nanowire surface density, without radial growth. In the second step, the nanowire length obeys the Chini equation, resulting in a non-linear increase in length with time and radial growth. The nanowire radii converge to a stationary value in the large time limit, showing a kind of size-narrowing effect. The model fits the data on the growth kinetics of a single self-catalyzed GaAs nanowire on a Si substrate well.


Sign in / Sign up

Export Citation Format

Share Document