nutrient deprivation
Recently Published Documents


TOTAL DOCUMENTS

362
(FIVE YEARS 87)

H-INDEX

52
(FIVE YEARS 6)

Biology Open ◽  
2022 ◽  
Author(s):  
Kerry C. Roby ◽  
Allyson Lieberman ◽  
Bang-Jin Kim ◽  
Nicole Zaragoza Rodríguez ◽  
Jessica M. Posimo ◽  
...  

Fibroblasts are quiescent and tumor suppressive in nature but become activated in wound healing and cancer. The response of fibroblasts to cellular stress has not been extensively investigated however the p53 tumor suppressor has been shown to be activated in fibroblasts during nutrient deprivation. Since the p19 Alternative reading frame (p19Arf) tumor suppressor is a key regulator of p53 activation during oncogenic stress, we investigated the role of p19Arf in fibroblasts during nutrient deprivation. Here we show that prolonged leucine deprivation resulted in increased expression and nuclear localization of p19Arf, triggering apoptosis in primary murine adult lung fibroblasts (ALFs). In contrast, the absence of p19Arf during long-term leucine deprivation resulted in increased ALF proliferation, migration and survival through upregulation of the Integrated Stress Response pathway and increased autophagic flux. Our data implicates a new role for p19Arf in response to nutrient deprivation.


Theranostics ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 859-874
Author(s):  
Valentina Vultaggio-Poma ◽  
Simonetta Falzoni ◽  
Paola Chiozzi ◽  
Alba Clara Sarti ◽  
Elena Adinolfi ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6152
Author(s):  
Yomna S. Abd El-Aziz ◽  
Lionel Y. W. Leck ◽  
Patric J. Jansson ◽  
Sumit Sahni

Autophagy is a cellular catabolic process, which is characterized by degradation of damaged proteins and organelles needed to supply the cell with essential nutrients. At basal levels, autophagy is important to maintain cellular homeostasis and development. It is also a stress responsive process that allows the cells to survive when subjected to stressful conditions such as nutrient deprivation. Autophagy has been implicated in many pathologies including cancer. It is well established that autophagy plays a dual role in different cancer types. There is emerging role of autophagy in oral squamous cell carcinoma (OSCC) development and progression. This review will focus on the role played by autophagy in relation to different aspects of cancer progression and discuss recent studies exploring the role of autophagy in OSCC. It will further discuss potential therapeutic approaches to target autophagy in OSCC.


2021 ◽  
Author(s):  
Midori Kato-Negishi ◽  
Jun Sawayama ◽  
Masahiro Kawahara ◽  
Shoji Takeuchi

Abstract For the establishment of a reproducible and sensitive assay system for three-dimensional (3D) tissue-based drug screening, it is essential to develop 3D tissue arrays with uniform shapes and high-cell numbers that prevent cell death in the center of the tissue. In recent years, 3D tissue arrays based on spheroids have attracted increased attention. However, they have only been used in specific tissues with hypoxic regions, such as cancer tissues, because nutrient deprivation and hypoxic regions are formed in the core as spheroids grow. Herein we propose a method to array cell-encapsulated tube-like tissue (cell fiber (CF)) with diameters <150 µm to prevent nutrient deprivation and hypoxia using a device that can fix the CFs, section them in uniform sizes and transfer them to a 96-well plate. We fabricated the arrays of CF fragments from cell lines (GT1-7), cancer cells (HeLa), mouse neural stem cells (mNSCs), and differentiated mNSCs, and performed drug response assays. The array of CF fragments assessed drug response differences among different cell types and drug responses specific to 3D tissues. The array of CF fragments may be used as a versatile drug screening system to detect drug sensitivities in various types of tissues.


2021 ◽  
Author(s):  
Melvin Pan ◽  
Christiane Zorbas ◽  
Maki Sugaya ◽  
Kensuke Ishiguro ◽  
Miki Kato ◽  
...  

SummaryRibosome biogenesis involves the processing of precursor ribosomal RNAs (pre-rRNAs) and sequential assembly with ribosomal proteins. Here we report that nutrient deprivation severely impairs pre-rRNA processing and leads to the accumulation of unprocessed rRNAs. Upon nutrient restoration, the accumulated pre-rRNAs are processed into mature rRNAs that are utilized for ribosome biogenesis. Failure to accumulate pre-rRNAs under nutrient deprivation leads to perturbed ribosome assembly during nutrient restoration and subsequent apoptosis via uL5/uL18-mediated activation of p53. Restoration of glutamine alone activates p53 by triggering uL5/uL18 translation. Induction of uL5/uL18 protein synthesis by glutamine was dependent on the translation factor eukaryotic elongation factor 2 (eEF2), which was in turn dependent on Raf/MEK/ERK signalling. Depriving cells of glutamine prevents the activation of p53 by rRNA synthesis inhibitors. Our data reveals a mechanism that cancer cells can exploit to suppress p53-mediated apoptosis during fluctuations in environmental nutrient availability.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi38-vi38
Author(s):  
Alberto Delaidelli ◽  
Gian Luca Negri ◽  
Betty Yao ◽  
Que Xi Wang ◽  
Yue Zhou Huang ◽  
...  

Abstract Group 3 affiliation and MYC genetic amplification are associated with poor life expectancy and substantial morbidity in children suffering from medulloblastoma (MB). However, the high metabolic demand induced by MYC-driven transformation sensitizes MYC-overexpressing MB to cell death under conditions of nutrient deprivation (ND). Additionally, MYC-driven transformation is known to promote mitochondrial oxidative phosphorylation (OXPHOS). We previously reported that eukaryotic Elongation Factor Kinase 2 (eEF2K), the master regulator of mRNA translation elongation, promotes survival of MYC-overexpressing tumors under ND. Interestingly, eEF2K is overexpressed in MYC-driven MB and our preliminary proteomics data highlight large-scale alterations in OXPHOS components affecting eEF2K deficient MB cells. We therefore hypothesized that eEF2K activity is required for the selective translation of mRNAs needed for efficient OXPHOS, and for the progression of MYC-driven MB. We pefrormed Multiplexed enhanced Protein Dynamic Mass Spectrometry in eEF2K knockdown MYC-overexpressing D425 MB cells to identify mRNAs selectively translated upon eEF2K activation. Messenger RNAs encoding multiple (9 out of 10 detected) components of the mitochondrial OXPHOS pathway are selectively translated upon eEF2K activation. Inactivation of eEF2K by genetic KO leads to the disassembly of electron transport chain (ETC) complexes I-IV without affecting mRNA levels of their respective components. Consistently, eEF2K KO MB cells display decreased mitochondrial membrane potential and 20% increased proton leak thorough the mitochondrial membrane. In addition, eEF2K inactivation results in increased Group 3 MB cell death under ND and doubles survival of MB bearing mice fed with calorie restricted diets (p&lt; 0.05). Control of mRNA translation elongation by eEF2K is critical for mitochondrial ETC complex assembly and efficient OXPHOS in MYC-overexpressing MB, likely representing an adaptive response by which MYC-driven MB cells cope with acute metabolic stress. Future therapeutic studies will aim to combine eEF2K inhibition with caloric restriction mimetic drugs as eEF2K activity appears critical under metabolic stress conditions.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 133-134
Author(s):  
John B Hall

Abstract Domestic ruminants utilize extensive pasture and rangelands as a primary source of nutrition. These forage sources vary greatly in nutritional content and availability due to season, plant species and climatic factors. Therefore, ruminants are exposed to nutrient excesses and deficiencies at varying points during the reproductive cycle. The objectives of this presentation are 1) to review our understanding of the impact of nutritional changes experienced by the dam during gestation on subsequent reproductive performance of female offspring, 2) examine the timing and duration of nutrient restriction on indicators of fertility in domestic ruminants and 3) compare responses under production conditions to mechanisms determined in controlled experiments. Depending on the time and severity of the nutrient deprivation, physiological effects include reduced gonadal weight, reduction in 2° and 3° follicles, alterations in the hypothalamic-pituitary axis, fetal weight and attainment of puberty. Anti-Müllerian hormone (AMH) and antral follicle count (AFC) are indicators of fertility in ruminants. Severe nutrient deprivation of heifers during the first trimester of gestation reduced AMH and AFC in female offspring. In contrast, a more moderate nutritional challenge to mature cows during early gestation did not result in changes in AMH and AFC in female offspring. Heifers from dams that grazed protein deficient range during the third trimester had delayed puberty onset and reduced pregnancy rates compared to heifers from supplemented dams. Recently, we compared indictors of fertility in heifers from dams that grazed range or irrigated pastures during the first two trimesters. Based on preliminary data, cows that grazed range were nutritionally challenged; however, heifers from range dams did not appear to differ in indicators of fertility from heifers from dams grazing irrigated pastures. Continued investigations on impacts of maternal nutrition on reproduction in offspring under production conditions are warranted.


2021 ◽  
Author(s):  
Houqing Yu ◽  
Roarke A Kamber ◽  
Vladimir Denic

Autophagy receptor (or adaptor) proteins facilitate lysosomal destruction of various organelles in response to cellular stress, including nutrient deprivation. To what extent membrane-resident autophagy receptors also respond to organelle-restricted cues to induce selective autophagy remains poorly understood. We find that latent activation of the yeast pexophagy receptor Atg36 by the casein kinase Hrr25 in rich media is repressed by the ATPase activity of Pex1/6, the catalytic subunits of the exportomer AAA+ transmembrane complex enabling protein import into peroxisomes. Quantitative proteomics of purified Pex3, an obligate Atg36 co-receptor, support a model in which exportomer represses Atg36 without assistance from additional membrane factors. Indeed, we reconstitute inhibition of Atg36 phosphorylation in vitro using soluble Pex1/6 and define an N-terminal unstructured region of Atg36 that enables regulation by binding to Pex1. Our findings uncover a mechanism by which a compartment-specific AAA+ complex mediating organelle biogenesis and protein quality control staves off induction of selective autophagy.


2021 ◽  
Author(s):  
ZHU ZENG ◽  
Shengbo Han ◽  
Yang Wang ◽  
Yan Huang ◽  
Yuhang Hu ◽  
...  

Abstract Background: Nutrient deprivation is a distinct feature of the tumor microenvironment that plays a crucial role in various cancers. However, the contribution and regulatory mechanism of nutrient deprivation on metastasis of pancreatic cancer (PC) have not been identified. Methods: PC cells were treated with normal medium, glucose-depletion or glutamine-depletion medium to observe the epithelial-mesenchymal transition (EMT). RT-qPCR and western blot assay were applied to evaluate the alteration of mRNA and protein of zinc finger E-box binding homeobox 1 (ZEB1), a crucial EMT regulator factor. Co-IP assay was utilized for evaluating the interaction between AMP-activated protein kinase (AMPK) and ZEB1. LncRNA microarray was adopted to detect the potential lncRNA, which facilitates the association between AMPK and ZEB1. Gain- and loss-of-function experiments were performed to evaluate the roles of ZNFX1 antisense RNA 1 (ZFAS1) in EMT and metastasis of PC. Results: The present study reveals that nutrient deprivation including glucose and glutamine deprivation significantly induces EMT of PC cells, which is dependent on stabilization of ZEB1. We further discover that nutrient deprivation induces upregulation of lncRNA ZFAS1, which promotes the association between AMPK and ZEB1 to phosphorylate and stabilize ZEB1 protein. Notably, ZEB1 reciprocally promotes the transcription of ZFAS1 by binding to the promoter of ZFAS1, forming feedback with ZFAS1. Consistently, depletion of ZFAS1 obviously inhibits nutrient deprivation-induced EMT of PC cells and lung metastasis of PC in nude mice. Meanwhile, clinical data displays that ZFAS1 is overexpressed in PC tissues and correlated with high expression of ZEB1 and Vimentin (VIM), low expression of E-cadherin (E-cad), as well as poor prognosis in PC patients. Conclusions: Our study implicates that glucose and glutamine deprivation promotes EMT and metastasis of PC through lncRNA-mediated stabilization of ZEB1.


Sign in / Sign up

Export Citation Format

Share Document