subgingival plaque
Recently Published Documents


TOTAL DOCUMENTS

397
(FIVE YEARS 57)

H-INDEX

51
(FIVE YEARS 2)

Author(s):  
Leila Salhi ◽  
Patrick Rijkschroeff ◽  
Dorien Van Hede ◽  
Marja L. Laine ◽  
Wim Teughels ◽  
...  

BackgroundPeriodontitis is a chronic inflammatory gum disease associated with systemic diseases such as cardiovascular diseases.AimTo investigate the association of systemic blood biomarkers, C-reactive protein (CRP), levels of lipopolysaccharide (LPS), and IgG levels against periodontal pathogens Aggregatibacter actinomycetemcomitans (Aa) and Porphyromonas gingivalis (Pg) with the stability, based on the aortic diameter, the growth rate and the eligibility for surgical intervention, of patients with abdominal aortic aneurysm (AAA).MethodsPatients with stable AAA (n = 30) and unstable AAA (n = 31) were recruited. The anti-A. actinomycetemcomitans and anti-P. gingivalis IgG levels were analyzed by ELISA, the LPS analysis was performed by using the limulus amebocyte lysate (LAL) test, and plasma levels of CRP were determined using an immune turbidimetric method. The association between these blood systemic biomarkers, AAA features, periodontal clinical parameters and oral microbial profiles were explored. Regression models were used to test the relationship between variables.ResultsThe presence of antibodies against Pg and Aa, LPS and high CRP concentrations were found in all AAA patients. The IgG levels were similar in patients with stable and unstable AAA (both for Aa and Pg). Among investigated blood biomarkers, only CRP was associated with AAA stability. The amount of LPS in saliva, supra, and subgingival plaque were significantly associated with the systemic LPS (p <0.05).ConclusionsThis post-hoc study emphasizes the presence of antibodies against Pg and Aa, LPS and high CRP concentrations in all AAA patients. The presence of Pg in saliva and subgingival plaque was significantly associated with the blood LPS levels. For further studies investigating periodontitis and systemic diseases, specific predictive blood biomarkers should be considered instead of the use of antibodies alone.


2021 ◽  
pp. 089875642110584
Author(s):  
Katherine E. Kling ◽  
Carol W. Maddox ◽  
Sandra Manfra Marretta ◽  
Christina Nowicki ◽  
David J. Schaeffer

This study was designed to investigate the effects of chlorhexidine 0.12%, TrisEDTA (tromethamine ethylenediamintetraacetic acid), and a combination of chlorhexidine 0.12% and TrisEDTA on an in vitro plaque biofilm model comprised of three bacterial species commonly found in canine subgingival plaque. Porphyromonas gulae, Actinomyces canis, and Neisseria canis were grown in a biofilm on polished hydroxyapatite coated titanium alloy pucks for 72 h prior to exposure to one of four test solutions: TrisEDTA, chlorhexidine 0.12%, a combination of TrisEDTA and chlorhexidine 0.12%, or sterile deionized water as a control. Following exposure to the test solution, a sample was collected of the biofilm either immediately or following 24 h of additional incubation in a broth medium. Lower numbers of CFU/mL of Porphyromonas gulae resulted when the biofilm was treated with a solution of chlorhexidine 0.12% and TrisEDTA compared to with chlorhexidine 0.12% alone, TrisEDTA alone, or the control and so this solution can be said to be synergistic against Porphyromonas gulae in this controlled in vitro model. Greater reductions in the numbers of CFU/mL of Actinomyces canis and Neisseria canis resulted from treatment with chlorhexidine 0.12% alone than if treated with the combination of TrisEDTA and chlorhexidine 0.12%. When treated biofilm samples were allowed 24 h of additional growth in fresh media, greater variance resulted and this variance highlights the complex dynamics involved in bacterial growth within a biofilm.


2021 ◽  
Vol 2 ◽  
Author(s):  
Jiaxin Zhang ◽  
Jialu Yu ◽  
Jinge Dou ◽  
Pingyue Hu ◽  
Qiang Guo

Smoking seriously affects oral health and causes a variety of oral diseases. Numerous clinical data show that smoking significantly increases the risk of periodontitis, and the duration and amount of smoking are positively correlated with the severity of periodontitis. In fact, smoking creates an environment conducive to the colonization of periodontopathogens, which affects the process of periodontitis. Since subgingival plaque which harbors periodontopathogens is the initiation factor of periodontitis, it is critical to study the impact of smoking on subgingival microbiota for understanding the relationship between smoking and periodontitis. Continuous advances have been made on the understanding of effects of smoking on subgingival plaque and the development of periodontitis. Smoking is observed to enhance the pathogenicity of periodontopathogens, especially the red complex microorganisms, via promoting their colonization and infection, and regulating the expression and function of multiple virulence factors. Furthermore, smoking has a negative impact on periodontal microecological homeostasis, which is reflected in the decrease of commensal bacteria and the increase of periodontopathogens, as well as the changes in the interaction between periodontopathogens and their commensal microbes in subgingival biofilm, thus influencing the pathogenicity of the subgingival plaque. In summary, the mechanism of smoking on subgingival plaque microorganisms represented by the red complex and its effect on the periodontal microecology still need to be further explored. The relevant research results are of great significance for guiding the periodontal clinical treatment of smoking population. This review summarizes the effects and relevant mechanisms of smoking on subgingival plaque and the development of periodontitis.


Author(s):  
Juliana Philip ◽  
Mark J. Buijs ◽  
Vincent Y. Pappalardo ◽  
Wim Crielaard ◽  
Bernd W. Brandt ◽  
...  

Author(s):  
Yaling Jiang ◽  
Bingqing Song ◽  
Bernd W. Brandt ◽  
Lei Cheng ◽  
Xuedong Zhou ◽  
...  

The development of periodontitis is associated with an imbalanced subgingival microbial community enriched with species such as the traditionally classified red-complex bacteria (Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola). Saliva has been suggested as an alternative to subgingival plaque for the microbial analysis due to its easy and non-invasive collection. This systematic review aims to determine whether the levels of red-complex bacteria assessed using saliva reflect those in subgingival plaque from periodontitis patients. The MEDLINE, EMBASE, and Cochrane Library databases were searched up to April 30, 2021. Studies were considered eligible if microbial data of at least one of the red-complex species were reported in both saliva and subgingival plaque from periodontitis patients, based on DNA-based methods. Of the 17 included studies, 4 studies used 16S rRNA gene sequencing techniques, and the rest used PCR-based approaches. The detection frequency of each red-complex species in periodontitis patients was reported to be > 60% in most studies, irrespective of samples types. Meta-analyses revealed that both detection frequencies and relative abundances of red-complex bacteria in saliva were significantly lower than those in subgingival plaque. Moreover, the relative abundances of all 3 bacterial species in saliva showed significantly positive correlation with those in subgingival plaque. In conclusion, current evidence suggests that one-time saliva sampling cannot replace subgingival plaque for microbial analysis of the red-complex bacteria in periodontitis patients. Given the positive microbial associations between saliva and subgingival plaque, a thorough review of longitudinal clinical studies is needed to further assess the role of saliva.


Author(s):  
Elaheh Rafiei ◽  
Hengameh Zandi ◽  
Neda Joshan ◽  
Fahimeh Rashidi Maybodi ◽  
Raheleh Fallah

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Daniel Belstrøm ◽  
Florentin Constancias ◽  
Daniela I. Drautz-Moses ◽  
Stephan C. Schuster ◽  
Mark Veleba ◽  
...  

AbstractThe purpose of the present investigation was to characterize species-specific bacterial activity of the oral microbiota in periodontitis. We tested the hypotheses that chronic inflammation, i.e., periodontitis, associates with bacterial gene expression of the oral microbiota. Oral microbial samples were collected from three oral sites—subgingival plaque, tongue, and saliva from patients with periodontitis and healthy controls. Paired metagenomics and metatranscriptomics were used to perform concomitant characterization of taxonomic composition and to determine species-specific bacterial activity as expressed by the ratio of specific messenger RNA reads to their corresponding genomic DNA reads. Here, we show the association of periodontitis with bacterial gene expression of the oral microbiota. While oral site was the main determinant of taxonomic composition as well as bacterial gene expression, periodontitis was significantly associated with a reduction of carbohydrate metabolism of the oral microbiota at three oral sites (subgingival plaque, tongue, and saliva). Data from the present study revealed the association of periodontitis with bacterial gene expression of the oral microbiota. Conditions of periodontitis was associated with bacterial activity of local subgingival plaque, but also on tongue and the salivary microbiota. Collectively, data suggest that periodontitis associates with impaired carbohydrate metabolism of the oral microbiota. Future longitudinal and interventional studies are warranted to evaluate the potential pathogenic role of impaired bacterial carbohydrate metabolism not only in periodontitis but also in other diseases with low-grade inflammation, such as type 2 diabetes mellitus.


Author(s):  
Daniel Belstrøm ◽  
Florentin Constancias ◽  
Merete Markvart ◽  
Martin Sikora ◽  
Christiane Elisabeth Sørensen ◽  
...  

BackgroundStreptococcus species are predominant members of the oral microbiota in both health and diseased conditions. The purpose of the present study was to explore if different ecological characteristics, such as oxygen availability and presence of periodontitis, associates with transcriptional activity of predominant members of genus Streptococcus. We tested the hypothesis that genetically closely related Streptococcus species express different transcriptional activities in samples collected from environments with critically different ecological conditions determined by site and inflammatory status.MethodsMetagenomic and metatranscriptomic data was retrieved from 66 oral samples, subgingival plaque (n=22), tongue scrapings (n=22) and stimulated saliva (n=22) collected from patients with periodontitis (n=11) and orally healthy individuals (n=11). Species-specific transcriptional activity was computed as Log2(RNA/DNA), and transcriptional activity of predominant Streptococcus species was compared between multiple samples collected from different sites in the same individual, and between individuals with different oral health status.ResultsThe predominant Streptococcus species were identified with a site-specific colonization pattern of the tongue and the subgingival plaque. A total of 11, 4 and 2 pathways expressed by S. parasanguinis, S. infantis and S. salivarius, respectively, were recorded with significantly higher transcriptional activity in saliva than in tongue biofilm in healthy individuals. In addition, 18 pathways, including pathways involved in synthesis of peptidoglycan, amino acid biosynthesis, glycolysis and purine nucleotide biosynthesis expressed by S. parasanguinis and 3 pathways expressed by S. salivarius were identified with significantly less transcriptional activity in patients with periodontitis.ConclusionData from the present study significantly demonstrates the association of site-specific ecological conditions and presence of periodontitis with transcriptional activity of the predominant Streptococcus species of the oral microbiota. In particular, pathways expressed by S. parasanguinis being involved in peptidoglycan, amino acid biosynthesis, glycolysis, and purine nucleotide biosynthesis were identified to be significantly associated with oral site and/or inflammation status.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5103
Author(s):  
Jaideep Mahendra ◽  
Abirami Nayaki Rao ◽  
Little Mahendra ◽  
Mohammed E. Sayed ◽  
Maryam H. Mugri ◽  
...  

Background: Inflammasomes have been shown to play a pivotal role in periodontal disease pathogenesis. However, their role in periodontitis subjects with coronary heart disease remains unclear. This study aimed to obtain the expression of NLRP3 (rs35829419) and IL-1β (+3954) gene polymorphisms in the subgingival plaque and blood samples of generalized periodontitis (GP) subjects with and without coronary heart disease (CHD). Methods: A total of 70 subjects were grouped into two; GP and GP with CHD. Demographic variables and periodontal and cardiac parameters were recorded from both the groups. Subgingival plaque and blood samples were obtained from both the groups and were further subjected to the identification of NLRP3 (rs35829419) and IL-1β (+3954) expression and allele change using a conventional polymerase chain reaction (PCR) and gene sequencing (Sanger’s method). Results: Amongst the demographic variables, age and monthly income were statistically significant between the two groups. Plaque index (PI), clinical attachment level (CAL), high-density lipoprotein (HDL), and low density-lipoprotein (LDL) exhibited statistically significant levels between the two groups. The NLRP3 (rs35829419) and IL-1β (+3954) genes showed a statistically significant association with allele change (frequency) among the groups. The general comparison of all the parameters with the allele change of NLRP3 (rs35829419) and IL-1β (+3954) in the subgingival plaque and blood samples showed statistically significant associations among the two groups. Conclusion: The present study highlighted an allele change in IL-1β (+3954) gene polymorphisms which may play an important role in the pathogenesis of periodontitis and coronary heart disease.


Sign in / Sign up

Export Citation Format

Share Document