cerebral artery occlusion
Recently Published Documents


TOTAL DOCUMENTS

2668
(FIVE YEARS 449)

H-INDEX

117
(FIVE YEARS 10)

Author(s):  
Bruno Cunha ◽  
Mariana Baptista ◽  
Jaime Pamplona ◽  
Rui Carvalho ◽  
Catarina Perry da Câmara ◽  
...  

2021 ◽  
Vol 4 (4) ◽  
pp. 592-612
Author(s):  
Ye Feng ◽  
Qian Xu ◽  
Raymond Tak Fai Cheung

Cerebral ischemia induces oxidative injury and increases the intracellular calcium ion concentration to activate several calcium-dependent proteases such as calpains. Calpain activation leads to various necrotic and apoptotic processes. Calpeptin is a potent, cell-permeable calpain inhibitor. As a strong antioxidant and free radical scavenger, melatonin shows beneficial effect in rodent models of focal cerebral ischemia when given prior to ischemia or reperfusion. This study was focused on the neuroprotective effects of melatonin and/or calpeptin given after onset of reperfusion. For this purpose, right-sided middle cerebral artery occlusion (MCAO) for 90 minutes followed by 24 or 72 hours of reperfusion was performed in male Sprague Dawley rats, then, melatonin 50 or 150 µg/kg, calpeptin 10, 15 or 50 µg/kg or a combination of melatonin 50 µg/kg plus calpeptin 15 or 50 µg/kg were injected via an intracerebroventricular route at 15 minutes after onset of reperfusion. Melatonin or calpeptin tended to reduce the relative infarct volume and significantly decreased the neurological deficit at 24 hours. The combination achieved a greater protection than each of them alone. Melatonin, calpeptin or the combination all decreased Fluoro-Jade B (FJB)+ degenerative neurons and cleaved/total caspase-3 ratio at 24 hours. These treatments did not significantly impact the density of surviving neurons and ED-1+ macrophage/activated microglia. At the 72-hour-reperfusion, melatonin or the combination decreased the relative infarct volume and neurological deficit. Nevertheless, only the combination reduced FJB+ degenerating neurons at 72 hours. In conclusion, a combination of melatonin and calpeptin exerted synergistic protection against post-reperfusion injury in a rat MCAO stroke model.


2021 ◽  
Vol 12 (1) ◽  
pp. 35
Author(s):  
Elina Rubin ◽  
Agnese C. Pippione ◽  
Matthew Boyko ◽  
Giacomo Einaudi ◽  
Stefano Sainas ◽  
...  

Aim: Nuclear factor kappa B (NF-κB) is known to play an important role in the inflammatory process which takes place after ischemic stroke. The major objective of the present study was to examine the effects of MEDS-23, a potent inhibitor of NF-κB, on clinical outcomes and brain inflammatory markers in post-ischemic stroke rats. Main methods: Initially, a Toxicity Experiment was performed to determine the appropriate dose of MEDS-23 for use in animals, as MEDS-23 was analyzed in vivo for the first time. We used the middle cerebral artery occlusion (MCAO) model for inducing ischemic stroke in rats. The effects of MEDS-23 (at 10 mg/kg, ip) on post-stroke outcomes (brain inflammation, fever, neurological deficits, mortality, and depression- and anxiety-like behaviours) was tested in several efficacy experiments. Key findings: MEDS-23 was found to be safe and significantly reduced the severity of some adverse post-stroke outcomes such as fever and neurological deficits. Moreover, MEDS-23 significantly decreased prostaglandin E2 levels in the hypothalamus and hippocampus of post-stroke rats, but did not prominently alter the levels of interleukin-6 and tumor necrosis factor-α. Significance: These results suggest that NF-κB inhibition is a potential therapeutic strategy for the treatment of ischemic stroke.


2021 ◽  
Vol 22 (24) ◽  
pp. 13544
Author(s):  
Mikhail V. Onufriev ◽  
Yulia V. Moiseeva ◽  
Marina Y. Zhanina ◽  
Natalia A. Lazareva ◽  
Natalia V. Gulyaeva

Two classical surgical approaches for intraluminal filament middle cerebral artery occlusion (MCAO), the Longa et al. (LM) and Koizumi et al. methods (KM), are used as alternatives in preclinical studies to induce stroke in rodents. Comparisons of these MCAO models in mice showed critical differences between them along with similarities (Smith et al. 2015; Morris et al. 2016). In this study, a direct comparison of MCAO-KM and MCAO-LM in rats was performed. Three days after MCAO, infarct volume, mortality rate, neurological deficit, and weight loss were similar in these models. MCAO-LM rats showed an increase in ACTH levels, while MCAO-KM rats demonstrated elevated corticosterone and interleukin-1β in blood serum. Corticosterone accumulation was detected in the frontal cortex (FC) and the hippocampus of the MCAO-KM group. IL1β beta increased in the ipsilateral hippocampus in the MCAO-KM group and decreased in the contralateral FC of MCAO-LM rats. Differences revealed between MCAO-KM and MCAO-LM suggest that corticosterone and interleukin-1β release as well as hippocampal accumulation is more expressed in MCAO-KM rats, predisposing them to corticosterone-dependent distant neuroinflammatory hippocampal damage. The differences between two models, particularly, malfunction of the hypothalamic–pituitary–adrenal axis, should be considered in the interpretation, comparison, and translation of pre-clinical experimental results.


2021 ◽  
pp. neurintsurg-2021-018239
Author(s):  
Gregory A Christoforidis ◽  
Niloufar Saadat ◽  
Mira Liu ◽  
Yong Ik Jeong ◽  
Steven Roth ◽  
...  

BackgroundSanguinate, a bovine PEGylated carboxyhemoglobin-based oxygen carrier with vasodilatory, oncotic and anti-inflammatory properties designed to release oxygen in hypoxic tissue, was tested to determine if it improves infarct volume, collateral recruitment and blood flow to the ischemic core in hyperacute middle cerebral artery occlusion (MCAO).MethodsUnder an IACUC approved protocol, 14 mongrel dogs underwent endovascular permanent MCAO. Seven received Sanguinate (8 mL/kg) intravenously over 10 min starting 30 min following MCAO and seven received a similar volume of normal saline. Relative cerebral blood flow (rCBF) was assessed using neutron-activated microspheres prior to MCAO, 30 min following MCAO and 30 min following intervention. Pial collateral recruitment was scored and measured by arterial arrival time (AAT) immediately prior to post-MCAO microsphere injection. Diffusion-weighted 3T MRI was used to assess infarct volume approximately 2 hours after MCAO.ResultsMean infarct volumes for control and Sanguinate-treated subjects were 4739 mm3 and 2585 mm3 (p=0.0443; r2=0.687), respectively. Following intervention, rCBF values were 0.340 for controls and 0.715 in the Sanguinate group (r2=0.536; p=0.0064). Pial collateral scores improved only in Sanguinate-treated subjects and AAT decreased by a mean of 0.314 s in treated subjects and increased by a mean of 0.438 s in controls (p<0.0276).ConclusionPreliminary results indicate that topload bolus administration of Sanguinate in hyperacute ischemic stroke significantly improves infarct volume, pial collateral recruitment and CBF in experimental MCAO immediately following its administration.


PLoS Biology ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. e3001399
Author(s):  
Yuanyuan Ji ◽  
Dennis Koch ◽  
Jule González Delgado ◽  
Madlen Günther ◽  
Otto W. Witte ◽  
...  

Ischemic stroke is a major cause of death and long-term disability. We demonstrate that middle cerebral artery occlusion (MCAO) in mice leads to a strong decline in dendritic arborization of penumbral neurons. These defects were subsequently repaired by an ipsilateral recovery process requiring the actin nucleator Cobl. Ischemic stroke and excitotoxicity, caused by calpain-mediated proteolysis, significantly reduced Cobl levels. In an apparently unique manner among excitotoxicity-affected proteins, this Cobl decline was rapidly restored by increased mRNA expression and Cobl then played a pivotal role in poststroke dendritic arbor repair in peri-infarct areas. In Cobl knockout (KO) mice, the dendritic repair window determined to span day 2 to 4 poststroke in wild type (WT) strikingly passed without any dendritic regrowth. Instead, Cobl KO penumbral neurons of the primary motor cortex continued to show the dendritic impairments caused by stroke. Our results thereby highlight a powerful poststroke recovery process and identified causal molecular mechanisms critical during poststroke repair.


2021 ◽  
pp. 0271678X2110653
Author(s):  
Li-Ping Wang ◽  
Jiaji Pan ◽  
Yongfang Li ◽  
Jieli Geng ◽  
Chang Liu ◽  
...  

White matter injury is a critical pathological characteristic during ischemic stroke. Oligodendrocyte precursor cells participate in white matter repairing and remodeling during ischemic brain injury. Since oligodendrocyte precursor cells could promote Wnt-dependent angiogenesis and migrate along vasculature for the myelination during the development in the central nervous system, we explore whether exogenous oligodendrocyte precursor cell transplantation promotes angiogenesis and remyelination after middle cerebral artery occlusion in mice. Here, oligodendrocyte precursor cell transplantation improved motor and cognitive function, and alleviated brain atrophy. Furthermore, oligodendrocyte precursor cell transplantation promoted functional angiogenesis, and increased myelin basic protein expression after ischemic stroke. The further study suggested that white matter repairing after oligodendrocyte precursor cell transplantation depended on angiogenesis induced by Wnt/β-catenin signal pathway. Our results demonstrated a novel pathway that Wnt7a from oligodendrocyte precursor cells acting on endothelial β-catenin promoted angiogenesis and improved neurobehavioral outcomes, which facilitated white matter repair and remodeling during ischemic stroke.


Stroke ◽  
2021 ◽  
Author(s):  
Chen Wang ◽  
Verena Börger ◽  
Ayan Mohamud Yusuf ◽  
Tobias Tertel ◽  
Oumaima Stambouli ◽  
...  

Background and Purpose: Small extracellular vesicles (sEVs) obtained from mesenchymal stromal cells (MSCs) were shown to induce ischemic neuroprotection in mice by modulating the brain infiltration of leukocytes and, specifically polymorphonuclear neutrophils. So far, effects of MSC-sEVs were only studied in young ischemic rodents. We herein examined the effects of MSC-sEVs in aged mice. Methods: Male and female C57Bl6/j mice (8–10 weeks or 15–24 months) were exposed to transient intraluminal middle cerebral artery occlusion. Vehicle or sEVs (equivalent of 2×10 6 MSCs) were intravenously administered. Neurological deficits, ischemic injury, blood-brain barrier integrity, brain leukocyte infiltration, and blood leukocyte responses were evaluated over up to 7 days. Results: MSC-sEV delivery reduced neurological deficits, infarct volume, brain edema, and neuronal injury in young and aged mice of both sexes, when delivered immediately postreperfusion or with 6 hours delay. MSC-sEVs decreased leukocyte and specifically polymorphonuclear neutrophil, monocyte, and macrophage infiltrates in ischemic brains of aged mice. In peripheral blood, the number of monocytes and activated T cells was significantly reduced by MSC-sEVs. Conclusions: MSC-sEVs induce postischemic neuroprotection and anti-inflammation in aged mice.


Sign in / Sign up

Export Citation Format

Share Document