drought response
Recently Published Documents


TOTAL DOCUMENTS

384
(FIVE YEARS 136)

H-INDEX

46
(FIVE YEARS 5)

2021 ◽  
Vol 12 ◽  
Author(s):  
Ming-zhu Jia ◽  
Ling-yun Liu ◽  
Chen Geng ◽  
Jing Jiang

The adjustment of stomatal density and clustered ratio on the epidermis is the important strategy for plants to respond to drought, because the stoma-based water loss is directly related to plant growth and survival under drought conditions. But the relevant adjustment mechanism still needs to be explored. 1-Aminocyclopropane-1-carboxylate (ACC) is disclosed to promote stomatal development, while in vivo ACC levels depend on activation of ACC synthase (ACS) family members. Based on the findings of ACS expression involving in drought response and several ACS activity inhibitors reducing stomatal density and cluster in drought response, here we examined how ACS activation is involved in the establishment of stomatal density and cluster on the epidermis under drought conditions. Preliminary data indicated that activation of ACS2 and/or ACS6 (ACS2/6) increased stomatal density and clustered ratio on the Arabidopsis leaf epidermis by accumulating ACC under moderate drought, and raised the survival risk of seedlings under escalated drought. Further exploration indicated that, in Arabidopsis seedlings stressed by drought, the transcription factor SPEECHLESS (SPCH), the initiator of stomatal development, activates ACS2/6 expression and ACC production; and that ACC accumulation induces Ca2+ deficiency in stomatal lineage; this deficiency inactivates a subtilisin-like protease STOMATAL DENSITY AND DISTRIBUTION 1 (SDD1) by stabilizing the inhibition of the transcription factor GT-2 Like 1 (GTL1) on SDD1 expression, resulting in an increases of stomatal density and cluster ratio on the leaf epidermis. This work provides a novel evidence that ACS2/6 activation plays a key role in the establishment of stomatal density and cluster on the leaf epidermis of Arabidopsis in response to drought.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12429
Author(s):  
Tianyu Wang ◽  
Xiangqian Gao ◽  
Sisi Chen ◽  
Dapei Li ◽  
Shuwen Chen ◽  
...  

Background Walnut is an important economic tree species with prominent economic value and ecological functions. However, in recent years, walnuts have become susceptible to drought stress, resulting in a decline in comprehensive benefits. Therefore, it is necessary to identify the regulatory molecular mechanism associated with walnut response to drought. In many plants, ethylene responsive factor (ERF) gene family plays important roles in response to biotic and abiotic stress, especial drought. Therefore, the identification and characterisation of walnut ERF genes will benefit walnut with regard to the clarification of drought response mechanism as well as the management, production, and quality of plantations. Methods ‘ERF’ was compared against the walnut transcriptome, and the JrERFs with a complete open reading frame (ORF) were identified by ORF Finder. The molecular weights, amino acid residues, and theoretical isoelectric point (pI) were predicted by ExPASy. The distribution of JrERFs in chromosome locations was determined based on walnut genome data from NCBI. The intron-exon structures and conserved domains were analysed using Gene Structure Display Server 2.0 and CD-Search, accordingly. Multi-sequence alignment and a phylogenetic tree were constructed by ClustalX2.1 and MEGA7, respectively. The conserved motifs were acquired using MEME. Total RNA was isolated using the cetyltrimethylammonium ammonium bromide (CTAB) method (Yang et al., 2018). Gene expression was determined by using real-time quantitative polymerase chain reaction (qRT-PCR) analysis and calculated according to the 2−ΔΔCT method (Livak & Schmittgen, 2001). Results A total of 44 JrERFs were identified from the walnut transcriptome, whose ORFs were 450–1,239 bp in length. The molecular weights of the JrERF proteins (consisting 149–412 amino acids) were 16.81–43.71 kDa, with pI ranging from 4.8 (JrERF11) to 9.89 (JrERF03). The JrERFs can be divided into six groups (B1–B6), and among the groups, B6 contained the most number of members. Each JrERF contained 1–6 motifs and each motif comprised 9–50 amino acids. Among the motifs, motif1, motif2, and motif3 were the most abundant. More than 40% of JrERFs were up-regulated continuously when subjected to ethephon (ETH), PEG6000, and PEG6000+ETH treatments. Of all the JrERFs, JrERF11 showed the highest expression. Therefore, we conclude that walnut ERF genes are highly conserved and involved in the regulation of drought response in the presence of ETH. JrERFs are possibly important candidate genes for molecular breeding; hence, the findings of this study provides the theoretical basis for further investigation of ERF genes in walnut and other species.


2021 ◽  
Vol 66 (3) ◽  
Author(s):  
Julia Shumilina ◽  
Daria Gorbach ◽  
Veronika Popova ◽  
Alexander Tsarev ◽  
Alena Kuznetsova ◽  
...  

Because of ongoing climate change, drought is becoming the major factor limiting productivity of all plants, including legumes. As these protein-rich crops form symbiotic associations with rhizobial bacteria — root nodules — they readily lose their productivity under drought conditions. Understanding the underlying molecular mechanisms might give access to new strategies to preserve the productivity of legume crops under dehydration. As was shown recently, development of drought response is accompanied by alterations in the patterns of protein glycation and formation of advanced glycation end products (AGEs) that might be a part of unknown regulatory mechanisms. Therefore, here we address the effects of moderate drought on protein dynamics and AGE patterns in pea (Pisum sativum) root nodules. For this, plants inoculated with rhizobial culture were subjected to osmotic stress for one week, harvested, the total protein fraction was isolated from root nodules by phenol extraction, analyzed by bottom-up LC-MS-based proteomics, and AGE patterns were characterized. Surprisingly, despite the clear drought-related changes in phenotype and stomatal conductivity, only minimal accompanying expressional changes (14 rhizobial and 14 pea proteins, mostly involved in central metabolism and nitrogen fixation) could be observed. However, 71 pea and 97 rhizobial proteins (mostly transcription factors, ABC transporters and effector enzymes) were glycated, with carboxymethylation being the major modification type. Thereby, the numbers of glycated sites in nodule proteins dramatically decreased upon stress application. It might indicate an impact of glycation in regulation of transport, protein degradation, central, lipid and nitrogen metabolism. The data are available at Proteome Xchange (accession: PXD024042).


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1742
Author(s):  
Olive Onyemaobi ◽  
Harriet Sangma ◽  
Gagan Garg ◽  
Xiaomei Wallace ◽  
Sue Kleven ◽  
...  

Drought stress requires plants to adjust their water balance to maintain tissue water levels. Isohydric plants (‘water-savers’) typically achieve this through stomatal closure, while anisohydric plants (‘water-wasters’) use osmotic adjustment and maintain stomatal conductance. Isohydry or anisohydry allows plant species to adapt to different environments. In this paper we show that both mechanisms occur in bread wheat (Triticum aestivum L.). Wheat lines with reproductive drought-tolerance delay stomatal closure and are temporarily anisohydric, before closing stomata and become isohydric at higher threshold levels of drought stress. Drought-sensitive wheat is isohydric from the start of the drought treatment. The capacity of the drought-tolerant line to maintain stomatal conductance correlates with repression of ABA synthesis in spikes and flag leaves. Gene expression profiling revealed major differences in the drought response in spikes and flag leaves of both wheat lines. While the isohydric drought-sensitive line enters a passive growth mode (arrest of photosynthesis, protein translation), the tolerant line mounts a stronger stress defence response (ROS protection, LEA proteins, cuticle synthesis). The drought response of the tolerant line is characterised by a strong response in the spike, displaying enrichment of genes involved in auxin, cytokinin and ethylene metabolism/signalling. While isohydry may offer advantages for longer term drought stress, anisohydry may be more beneficial when drought stress occurs during the critical stages of wheat spike development, ultimately improving grain yield.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2107
Author(s):  
Stacy D. Singer ◽  
Udaya Subedi ◽  
Madeline Lehmann ◽  
Kimberley Burton Burton Hughes ◽  
Biruk A. Feyissa ◽  
...  

Alfalfa (Medicago sativa L.) is an extensively grown perennial forage legume, and although it is relatively drought tolerant, it consumes high amounts of water and depends upon irrigation in many regions. Given the progressive decline in water available for irrigation, as well as an escalation in climate change-related droughts, there is a critical need to develop alfalfa cultivars with improved drought resilience. M. sativa subsp. falcata is a close relative of the predominantly cultivated M. sativa subsp. sativa, and certain accessions have been demonstrated to exhibit superior performance under drought. As such, we endeavoured to carry out comparative physiological, biochemical, and transcriptomic evaluations of an as of yet unstudied drought-tolerant M. sativa subsp. falcata accession (PI 641381) and a relatively drought-susceptible M. sativa subsp. sativa cultivar (Beaver) to increase our understanding of the molecular mechanisms behind the enhanced ability of falcata to withstand water deficiency. Our findings indicate that unlike the small number of falcata genotypes assessed previously, falcata PI 641381 may exploit smaller, thicker leaves, as well as an increase in the baseline transcriptional levels of genes encoding particular transcription factors, protective proteins, and enzymes involved in the biosynthesis of stress-related compounds. These findings imply that different falcata accessions/genotypes may employ distinct drought response mechanisms, and the study provides a suite of candidate genes to facilitate the breeding of alfalfa with enhanced drought resilience in the future.


Author(s):  
Shujuan Wang ◽  
Cheng Lu ◽  
Xin Chen ◽  
Haiyan Wang ◽  
Wenquan Wang

AbstractDrought stress is one of the major environmental factors that limited crop’s growth and production. Cassava known as a tropical crop that is widely distributed in Sub-Saharan Africa. It has a strong drought tolerance and can grow well under tough environmental conditions. Therefore, understanding how cassava responds to drought stress and coordinates survival and accumulation has great theoretical significance for improving crop drought resistance breeding. Many studies on cassava drought responses mainly focused on the leaf and whole seedling. Nevertheless, how the vasculature plays an important role in plant response to water deficiency remains to be fully elucidated. Here, comparative transcriptome analysis was performed on isolated mesophyll tissue and leaf vein vascular tissue of cassava variety KU50 after mild drought treatment to determine the molecular mechanism behind drought resistance in cassava vasculature. Our results showed that KU50 leaves had increased leaf temperature, with characters of rapidly decreased net photosynthetic rate, stomatal conductance, and transpiration rate in leaves, and the intercellular CO2 concentration accumulated under drought stress. Comparative transcriptome profiling revealed that under drought stress, leaf mesophyll tissue mainly stimulated the biosynthesis of amino acids, glutamic acid metabolism, and starch and sucrose metabolism. In particular, the arginine biosynthesis pathway was significantly enhanced to adapt to the water deficiency in leaf mesophyll tissue. However, in vascular tissue, the response to drought mainly involved ion transmembrane transport, hormone signal transduction, and depolymerization of proteasome. Concretely, ABA signaling and proteasome metabolism, which are involved in ubiquitin regulation, were changed under drought stress in KU50 leaf vascular tissue. Our work highlights that the leaf vasculature and mesophyll in cassava have completely different drought response mechanisms.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1409
Author(s):  
Shuang Li ◽  
Xu He ◽  
Yuan Gao ◽  
Chenguang Zhou ◽  
Vincent L. Chiang ◽  
...  

Drought stress causes recurrent damage to a healthy ecosystem because it has major adverse effects on the growth and productivity of plants. However, plants have developed drought avoidance and resilience for survival through many strategies, such as increasing water absorption and conduction, reducing water loss and conversing growth stages. Understanding how plants respond and regulate drought stress would be important for creating and breeding better plants to help maintain a sound ecosystem. Epigenetic marks are a group of regulators affecting drought response and resilience in plants through modification of chromatin structure to control the transcription of pertinent genes. Histone acetylation is an ubiquitous epigenetic mark. The level of histone acetylation, which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), determines whether the chromatin is open or closed, thereby controlling access of DNA-binding proteins for transcriptional activation. In this review, we summarize histone acetylation changes in plant response to drought stress, and review the functions of HATs and HDACs in drought response and resistance.


Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 299
Author(s):  
Beatriz Bielsa ◽  
María Ángeles Sanz ◽  
María José Rubio-Cabetas

One of the challenges in rootstock breeding programs is the combination of tolerances to different abiotic stresses in new interspecific hybrids adapted to a wide range of environmental conditions. In this work, two Prunus L. rootstocks: Myrobalan ‘P.2175’ (P. cerasifera Ehrh.) and the almond × peach hybrid ‘Garnem’ (P. amygdalus Batsch × P. persica (L.) Batsch) were subjected to drought during 24 h to understand their drought response mechanisms. The study was conducted monitoring leaf water potential (LWP), stomatal conductance (gs), relative water content (RWC), and electrolyte leakage (EL); as well as the abscisic acid (ABA) content in roots. The relative expression of five drought-relative genes was also studied. The obtained results allowed examining the drought tolerance potential of ‘Garnem’ and Myrobalan ‘P.2175’, demonstrating the great potential of ‘Garnem’ as drought tolerance source in future selections in breeding. Furthermore, based on the obtained data, the transcription factor Myb25-like could be a good biomarker of drought sensitivity for use in Prunus rootstock breeding programs.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fei Zhang ◽  
Jinfeng Wu ◽  
Nir Sade ◽  
Si Wu ◽  
Aiman Egbaria ◽  
...  

Abstract Background Drought is a major environmental disaster that causes crop yield loss worldwide. Metabolites are involved in various environmental stress responses of plants. However, the genetic control of metabolomes underlying crop environmental stress adaptation remains elusive. Results Here, we perform non-targeted metabolic profiling of leaves for 385 maize natural inbred lines grown under well-watered as well as drought-stressed conditions. A total of 3890 metabolites are identified and 1035 of these are differentially produced between well-watered and drought-stressed conditions, representing effective indicators of maize drought response and tolerance. Genetic dissections reveal the associations between these metabolites and thousands of single-nucleotide polymorphisms (SNPs), which represented 3415 metabolite quantitative trait loci (mQTLs) and 2589 candidate genes. 78.6% of mQTLs (2684/3415) are novel drought-responsive QTLs. The regulatory variants that control the expression of the candidate genes are revealed by expression QTL (eQTL) analysis of the transcriptomes of leaves from 197 maize natural inbred lines. Integrated metabolic and transcriptomic assays identify dozens of environment-specific hub genes and their gene-metabolite regulatory networks. Comprehensive genetic and molecular studies reveal the roles and mechanisms of two hub genes, Bx12 and ZmGLK44, in regulating maize metabolite biosynthesis and drought tolerance. Conclusion Our studies reveal the first population-level metabolomes in crop drought response and uncover the natural variations and genetic control of these metabolomes underlying crop drought adaptation, demonstrating that multi-omics is a powerful strategy to dissect the genetic mechanisms of crop complex traits.


Sign in / Sign up

Export Citation Format

Share Document