pore morphology
Recently Published Documents


TOTAL DOCUMENTS

350
(FIVE YEARS 77)

H-INDEX

38
(FIVE YEARS 6)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7256
Author(s):  
Michal Vopalensky ◽  
Petr Koudelka ◽  
Jan Sleichrt ◽  
Ivana Kumpova ◽  
Matej Borovinsek ◽  
...  

Observation of dynamic testing by means of X-ray computed tomography (CT) and in-situ loading devices has proven its importance in material analysis already, yielding detailed 3D information on the internal structure of the object of interest and its changes during the experiment. However, the acquisition of the tomographic projections is, in general, a time-consuming task. The standard method for such experiments is the time-lapse CT, where the loading is suspended for the CT scan. On the other hand, modern X-ray tubes and detectors allow for shorter exposure times with an acceptable image quality. Consequently, the experiment can be designed in a way so that the mechanical test is running continuously, as well as the rotational platform, and the radiographic projections are taken one after another in a fast, free-running mode. Performing this so-called on-the-fly CT, the time for the experiment can be reduced substantially, compared to the time-lapse CT. In this paper, the advanced pore morphology (APM) foam elements were used as the test objects for in-situ X-ray microtomography experiments, during which series of CT scans were acquired, each with the duration of 12 s. The contrast-to-noise ratio and the full-width-half-maximum parameters are used for the quality assessment of the resultant 3D models. A comparison to the 3D models obtained by time-lapse CT is provided.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5897
Author(s):  
Matej Borovinsek ◽  
Petr Koudelka ◽  
Jan Sleichrt ◽  
Michal Vopalensky ◽  
Ivana Kumpova ◽  
...  

Advanced pore morphology (APM) foam elements are almost spherical foam elements with a solid outer shell and a porous internal structure mainly used in applications with compressive loading. To determine how the deformation of the internal structure and its changes during compression are related to its mechanical response, in-situ time-resolved X-ray computed microtomography experiments were performed, where the APM foam elements were 3D scanned during a loading procedure. Simultaneously applying mechanical loading and radiographical imaging enabled new insights into the deformation behaviour of the APM foam samples when the mechanical response was correlated with the internal deformation of the samples. It was found that the highest stiffness of the APM elements is reached before the appearance of the first shear band. After this point, the stiffness of the APM element reduces up to the point of the first self-contact between the internal pore walls, increasing the sample stiffness towards the densification region.


Author(s):  
Ding Yang ◽  
Zhenyun Tian ◽  
Jingjing Song ◽  
Tengfei Lu ◽  
Guibao Qiu ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jiajie Yang ◽  
Yaqiang Li ◽  
Xiaojian Shi ◽  
Meihua Shen ◽  
Kaibing Shi ◽  
...  

Abstract Objective Mechanic strength, pore morphology and size are key factors for the three-dimensional (3D) printing of porous titanium scaffolds, therefore, developing optimal structure for the 3D printed titanium scaffold to fill bone defects in knee joints is instructive and important. Methods Structural models of titanium scaffolds with fifteen different pore unit were designed with 3D printing computer software; five different scaffold shapes were designed: imitation diamond-60°, imitation diamond-90°, imitation diamond-120°, regular tetrahedron and regular hexahedron. Each structural shape was evaluated with three pore sizes (400, 600 and 800 μm), and fifteen types of cylindrical models (size: 20 mm; height: 20 mm). Autodesk Inventor software was used to determine the strength and safety of the models by simulating simple strength acting on the knee joints. We analyzed the data and found suitable models for the design of 3D printing of porous titanium scaffolds. Results Fifteen different types of pore unit structural models were evaluated under positive pressure and lateral pressure; the compressive strength reduced when the pore size increased. Under torsional pressure, the strengths of the imitation diamond structure were similar when the pore size increased, and the strengths of the regular tetrahedron and regular hexahedron structures reduced when the pore size increased. In each case, the compressive strength of the regular hexahedron structure was highest, that of the regular tetrahedron was second highest, and that of the imitation diamond structure was relatively low. Fifteen types of cylindrical models under a set force were evaluated, and the sequence of comprehensive compressive strength, from strong to weak was: regular hexahedron > regular tetrahedron > imitation diamond-120° > imitation diamond-90° > imitation diamond-60°. The compressive strength of cylinder models was higher when the pore size was smaller. Conclusion The pore size and pore morphology were important factors influencing the compressive strength. The strength of each structure reduced when the pore size (400, 600 and 800 μm) increased. The models of regular hexahedron, regular tetrahedron and imitation diamond-120°appeared to meet the conditions of large pore sizes and high compressive strength.


2021 ◽  
Vol 18 (2) ◽  
pp. 6-11
Author(s):  
A.V. Shishulin ◽  

In this paper, we have shown how the presence of pores and pore morphology influence on magnetic phase transition temperatures in mesoporous ferromagnetic materials. Model calculations have demonstrated the possibility to obtain macroscopic mesoporous samples with notably reduced Curie temperatures which is also further depressed in the case the pore morphology is more complicated. The results have been obtained on the basis of the experimentally verified correlation between the Curie temperature and cohesive energy of the material and illustrated using the examples of pure mesoporous iron, nickel and cobalt while pore morphology has been determined by the methods of fractal geometry. Several practical applications of mesoporous materials with tuned values of the Curie temperature have also been discussed in the final section.


2021 ◽  
Vol 33 (6) ◽  
pp. 062009
Author(s):  
Zhengyi Chen ◽  
Shi Yue Liu ◽  
Ivan C. Christov ◽  
Pejman Sanaei

Sign in / Sign up

Export Citation Format

Share Document