control architecture
Recently Published Documents


TOTAL DOCUMENTS

1842
(FIVE YEARS 297)

H-INDEX

47
(FIVE YEARS 8)

2022 ◽  
Vol 121 ◽  
pp. 105034
Author(s):  
R. Donald Bartusiak ◽  
Stephen Bitar ◽  
David L. DeBari ◽  
Bradley G. Houk ◽  
Dennis Stevens ◽  
...  

2022 ◽  
Author(s):  
Bethany L. Allik ◽  
Cory Miller ◽  
James M. Maley ◽  
Hamaoui Moshe ◽  
Michael Don

2022 ◽  
Vol 8 ◽  
Author(s):  
Edoardo Milana ◽  
Bert Van Raemdonck ◽  
Andrea Serrano Casla ◽  
Michael De Volder ◽  
Dominiek Reynaerts ◽  
...  

Soft robotic systems typically follow conventional control schemes, where actuators are supplied with dedicated inputs that are regulated through software. However, in recent years an alternative trend is being explored, where the control architecture can be simplified by harnessing the passive mechanical characteristics of the soft robotic system. This approach is named “morphological control”, and it can be used to decrease the number of components (tubing, valves and regulators) required by the controller. In this paper, we demonstrate morphological control of bio-inspired asymmetric motions for systems of soft bending actuators that are interconnected with passive flow restrictors. We introduce bending actuators consisting out of a cylindrical latex balloon in a flexible PVC shell. By tuning the radii of the tube and the shell, we obtain a nonlinear relation between internal pressure and volume in the actuator with a peak and valley in pressure. Because of the nonlinear characteristics of the actuators, they can be assembled in a system with a single pressure input where they bend in a discrete, preprogrammed sequence. We design and analyze two such systems inspired by the asymmetric movements of biological cilia. The first replicates the swept area of individual cilia, having a different forward and backward stroke, and the second generates a travelling wave across an array of cilia.


2021 ◽  
Vol 18 (185) ◽  
Author(s):  
Bashir Hosseini Jafari ◽  
Ksenia Zlobina ◽  
Giovanny Marquez ◽  
Mohammad Jafari ◽  
John Selberg ◽  
...  

Bioelectronic devices can provide an interface for feedback control of biological processes in real-time based on sensor information tracking biological response. The main control challenges are guaranteeing system convergence in the presence of saturating inputs into the bioelectronic device and complexities from indirect control of biological systems. In this paper, we first derive a saturated-based robust sliding mode control design for a partially unknown nonlinear system with disturbance. Next, we develop a data informed model of a bioelectronic device for in silico simulations. Our controller is then applied to the model to demonstrate controlled pH of a target area. A modular control architecture is chosen to interface the bioelectronic device and controller with a bistable phenomenological model of wound healing to demonstrate closed-loop biological treatment. External pH is regulated by the bioelectronic device to accelerate wound healing, while avoiding chronic inflammation. Our novel control algorithm for bioelectronic devices is robust and requires minimum information about the device for broad applicability. The control architecture makes it adaptable to any biological system and can be used to enhance automation in bioengineering to improve treatments and patient outcomes.


Author(s):  
Paramet Wirasanti ◽  
Suttichai Premrudeepreechacharn

<span lang="EN-US">Regarding a potential of electric vehicles, it has been widely discussed that the electric vehicle can be participated in electricity ancillary services. Among the ancillary service products, the system frequency regulation is often considered. However, the participation in this service has to be conformed to the hierarchical frequency control architecture. Therefore, the vehicle to grid (V2G) application in this article is proposed in the term of multiple-areas of operation. The multiple-areas in this article are concerned as parking areas, which the parking areas can be implied as a V2G operator. From that, V2G operator can obtain the control signal from hierarchical control architecture for power sharing purpose. A power sharing concept between areas is fulfilled by a proposed adaptive droop factor based on battery state of charge and available capacity of parking area. A nonlinear multiplier factor is used for the droop adaptation. An available capacity is also applied as a limitation for the V2G operation. The available capacity is analyzed through a stochastic character. As the V2G application has to be cooperated with the hierarchical control functions, i.e. primary control and secondary control, then the effect of V2G on hierarchical control functions is investigated and discussed.</span>


Author(s):  
Md Samiul Haque Sunny ◽  
Md Ishrak Islam Zarif ◽  
Ivan Rulik ◽  
Javier Sanjuan ◽  
Mohammad Habibur Rahman ◽  
...  

Abstract Background Building control architecture that balances the assistive manipulation systems with the benefits of direct human control is a crucial challenge of human–robot collaboration. It promises to help people with disabilities more efficiently control wheelchair and wheelchair-mounted robot arms to accomplish activities of daily living. Methods In this study, our research objective is to design an eye-tracking assistive robot control system capable of providing targeted engagement and motivating individuals with a disability to use the developed method for self-assistance activities of daily living. The graphical user interface is designed and integrated with the developed control architecture to achieve the goal. Results We evaluated the system by conducting a user study. Ten healthy participants performed five trials of three manipulation tasks using the graphical user interface and the developed control framework. The 100% success rate on task performance demonstrates the effectiveness of our system for individuals with motor impairments to control wheelchair and wheelchair-mounted assistive robotic manipulators. Conclusions We demonstrated the usability of using this eye-gaze system to control a robotic arm mounted on a wheelchair in activities of daily living for people with disabilities. We found high levels of acceptance with higher ratings in the evaluation of the system with healthy participants.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pankaj Sahu ◽  
Rajiv Dey

AbstractUnder rapidly changing environmental conditions, the model reference adaptive control (MRAC) based MPPT schemes need high adaptation gain to achieve fast convergence and guaranteed transient performance. The high adaptation gain causes high-frequency oscillations in the control signals resulting in numerical instability and inefficient operation. This paper proposes a novel high-frequency learning-based adjustable gain MRAC (HFLAG-MRAC) for a 2-level MPPT control architecture in photovoltaic (PV) systems to ensure maximum power delivery to the load under rapidly changing environmental conditions. In the proposed 2-level MPPT control architecture, the first level is the conventional ripple correlation control (RCC) that yields a steady-state ripple-free optimum duty cycle. The duty cycle obtained from the first level serves as an input to the proposed HFLAG-MRAC in the second level. In the proposed adaptive law, the adaptation gain varies as a function of the high-frequency ripple content of the tracking error. These high-frequency contents are the difference between the tracking error and its low-pass filtered version representing the fluctuations in output due to rapid changes in the environmental conditions. Thus, adjusting the adaptation gain by high-frequency content of the tracking error ensures fast convergence, guaranteed transient performance, and overall system stability without needing high adaptation gain. The adaptive law of the proposed HFLAG-MRAC is derived using the Lyapunov theory. Simulation studies, experimental analysis, and performance comparison with recent similar work validate the effectiveness of the proposed work.


Sign in / Sign up

Export Citation Format

Share Document