energy index
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 54)

H-INDEX

15
(FIVE YEARS 4)

2022 ◽  
pp. 136943322110561
Author(s):  
Xiang Xu ◽  
Zhen-Dong Qian ◽  
Qiao Huang ◽  
Yuan Ren ◽  
Bin Liu

To rate uncertainties within anomaly detection course for large span cable-supported bridges, a probabilistic approach is developed based on confidence interval estimation of extreme value analytics. First, raw signals from structural health monitoring system are pre-processed, including missing data imputation using moving time window mean imputation approach and thermal response separation through multi-resolution wavelet-based method. Then, an energy index is extracted from time domain signals to enhance robust of detection performance. A resampling-based method, namely the bootstrap, is adopted herein for confidence interval estimation. Four confidence levels are defined for the anomaly trend detection in this study, namely 95%, 80%, 50%, and 20%. Finally, the effectiveness of the proposed anomaly trend detection methodology is validated by using in-situ cable force measurements from the Nanjing Dashengguan Yangtze River Bridge. As a result, the four-level anomaly detection triggers are determined by using the confidence interval estimation based on cable force measurements in 2007, which are 58,671, 48,862, 42,499 and 39,035, respectively. Subsequently, three cases are presented, which are spike detection, overloading vehicle detection and snow disaster detection. Through the spike detection, it is verified that energy index is capable to tolerate signal spikes. Three overloading events are simulated to conduct overloading vehicle detections. As a result, the three overloading events are detected successfully associated with different confidences. Snow disaster is detected with a more than 80% confidence based on the field measurements during the snow storm time window.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Feng He ◽  
Tianjiao Ren ◽  
Song Yang ◽  
Hongjie Bian

In response to the increasing severity of the rock burst phenomenon and its relatively difficult prediction, peridynamics and indoor uniaxial compression experiments were used to calculate the changes of the internal elastic energy (t) and impact energy (c) for different rock masses during a loading process from an energy perspective. Two traditional indices for judging rock burst tendency—the rock elastic deformation energy index (WET) and the rock impact energy index (WCF)—were combined to define a new actual impact energy index (W) to more accurately determine the occurrence tendency of rock bursts. The LAMMPS software was used to simulate the internal energy changes of rock materials under pressure, and the results were compared with experimental results for verification. The results were as follows: (1) in the uniaxial compression experiments of different specimens, fine sandstone had the strongest impact resistance, followed by coarse sandstone, mudstone, bottom coal seam, and top coal seam, and the obtained material properties provide a reference for predicting the rock bursts of various rock types in practical engineering. (2) The values calculated using the actual impact energy index (W) and the simulation value were 1.75 and 1.77, respectively, which corresponded to a lower error than when the rock impact energy index (WCF) and the rock elastic deformation energy index (WET) were used individually. Thus, this index can better predict the rock burst. (3) The simulated specimen was subjected to a gradual increase in the internal stored elastic energy during compression, which gradually decreased after the ultimate compressive strength was exceeded. The degree of impact damage formed after macroscopic crushing occurred depended on its residual energy.


2021 ◽  
Vol 63 (1) ◽  
pp. 154-162
Author(s):  
Sergiu Hațegan ◽  
Marius Paulescu

Abstract This study deals with the spectral distribution of solar radiation in Timisoara, Romania. Solar spectrum at the ground level was estimated based on Leckner’s spectral solar irradiance model and measured atmospheric parameters over the years 2019-2020. The average photon energy index (APE) was used to capture the characteristic signature of the solar radiation spectrum. The results emphasize considerable differences between the solar radiation spectrum in Timisoara and the standard AM1.5G spectrum. During 2019-2020, APE has taken values between 1.841 eV and 1.929 eV, indicating both red- and blue-shift from the standard AM1.5G spectrum. To our best knowledge this is the first study which discusses the signature of solar radiation spectrum in terms of APE for a location in Romania.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5065
Author(s):  
Yonghai Xu ◽  
Xingguan Fan ◽  
Siying Deng ◽  
Chunhao Niu

Considering the influence of user equipment voltage tolerance characteristics and sag types on the evaluation results, this paper proposes a voltage sag severity evaluation method for the system side which considers the influence of the voltage tolerance curve and sag type. As such, a quantitative evaluation of the severity of voltage sag events can be achieved. Firstly, the user’s voltage tolerance curve is used to construct the comparison reference value of the energy index, in order to realize the rapid analysis of the severity of the sag event in the normal area and the abnormal area. Secondly, aiming at the problem of insufficient descriptions of the severity difference of sag events in uncertain areas, an improved energy index evaluation model combined with user tolerance characteristics is established through an interval division and interval weight calculation, so as to divide and evaluate the severity of sag events in uncertain areas. Considering the influence of the sag type on the voltage tolerance curve and user equipment, the energy index correction factor is then constructed, and the measurement function is used for an interval evaluation to obtain the ranking result of the voltage sag severity, which is more in line with the actual situation. Finally, the rationality and effectiveness of the proposed method are verified by analyzing 24 voltage sag events at a monitoring node.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hongru Li ◽  
Manchao He ◽  
Rongxi Shen ◽  
Yingming Xiao ◽  
Tai Cheng

Previous studies have shown that water can reduce the acoustic emission (AE) energy and other parameters during rock failure. However, the fracture mechanism of rock can be better reflected by analyzing the AE waveform. Therefore, this paper conducted experiments of uniaxial compression on sandstone samples of various water contents and collected AE signals simultaneously. Analyses of fast Fourier transform (FFT) and Hilbert-Huang transform (HHT) were performed on the AE waveform when the sample failed. The results show that as the water content increases, the frequency and intensity of the AE signal will decrease. The influence of water on the intensity of the AE signal is greater than that on the frequency. Through the analysis of the energy mechanism of rock failure, it is pointed out that the frequency and intensity of AE signal are closely related to elastic energy index W ET and burst energy index K E . The research results have guiding significance for the monitoring of rockburst.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Nan Liu ◽  
Chuanming Li ◽  
Ruimin Feng ◽  
Xin Xia ◽  
Xiang Gao

Rock burst occurs frequently as coal mining depth goes deeper, which seriously impacts the safety production of underground coal mines. Coal seam water injection is a technique commonly used to prevent and control such accidents. Moisture content is a critical factor tightly related to rock burst; however, an in-depth insight is required to discover their relationship. In this study, the influence of moisture content on the mechanical properties of coal and rock burst tendency is explored via multiple measurement techniques: uniaxial compression test, cyclic loading/unloading test, and acoustic emission (AE) test. These tests were performed on coal samples using the MTS-816 rock mechanics servo testing machine and AE system. The testing results showed that with the increase in moisture content, the peak strength and elastic modulus of each coal sample are reduced while the peak strain increases. The duration of the elastic deformation phase in the complete stress-strain curves of coal samples is shortened. As the moisture content increases, the area of hysteretic loop and elastic energy index W ET of each coal sample are reduced, and the impact energy index K E is negatively correlated with the moisture content, whereas dynamic failure time is positively correlated with the moisture content, but this variation trend is gradually mitigated with the continuous increase of moisture content. The failure of the coal sample is accompanied by the sharp increase in the AE ring-down count, whose peak value lags behind the peak stress, and the ring-down count is still generated after the coal sample reached the peak stress. With the increase in moisture content, the failure mode of the coal sample is gradually inclined to tensile failure. The above test results manifested that the strength of the coal sample is weakened to some extent after holding moisture, the accumulative elastic energy is reduced in case of coal failure, and thus, coal and rock burst tendency can be alleviated. The study results can provide a theoretical reference for studying the fracture instability of moisture-bearing coal and prevention of coal and rock burst by the water injection technique.


2021 ◽  
Vol 8 ◽  
Author(s):  
Decai Wang ◽  
Hui Yao ◽  
Jinchao Yue ◽  
Shengneng Hu ◽  
Junfu Liu ◽  
...  

The objective of this study is to investigate the compaction characteristics of cold recycled mixtures with asphalt emulsion (CRME) using the Superpave gyratory compactor (SGC) method. Five characteristic parameters were proposed and calculated including the compaction energy index, the compaction energy index, three compaction energy indicators at different compaction stages. The influence of these parameters and material compositions were analyzed for the pavement performance. The difference between SGC and Marshall double-sided compaction/heavy compaction method was compared. The results show that the proposed parameters can better reflect the compaction characteristics of CRME, and the mixture effect with SGC of 50 gyrations was close to that with 75 blows using the Marshall compaction. The asphalt emulsion contents and compaction temperatures had a significant effect on compaction characteristics, but the effect of aggregate gradations was not significant. The appropriate asphalt emulsion and the new aggregate content can increase the capability of the CRME to resist the permanent deformation. The optimum mixing water content of CRME obtained by the SGC method was reduced by 18%, but the density increased by 3.5%, compared with the heavy compaction method. Finally, a new idea to determine the optimum emulsified asphalt content of CRME was provided through analyzing the compaction characteristic parameters.


Sign in / Sign up

Export Citation Format

Share Document