conical intersection
Recently Published Documents


TOTAL DOCUMENTS

484
(FIVE YEARS 93)

H-INDEX

55
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Nanna H. List ◽  
Chey M. Jones ◽  
Todd J. Martínez

The Z–E photoisomerization quantum yield of the HBDI− chromophore is a result of early, non-statistical dynamics around a less reactive I-twisted intersection and later, statistical behavior around the more reactive, near-enantiomeric counterpart.


Author(s):  
Ignacio Fdez. Galván ◽  
Anders Brakestad ◽  
Morgane Vacher

Chemiexcitation of 1,2-dioxetanes is initiated by the cleavage of the O–O bond, then the molecule enters a region where nonadiabatic transitions to excited states are feasible. Does the surface topography explain chemiexcitation yield differences?


2021 ◽  
Author(s):  
Ignacio Fernández Galván ◽  
Anders Brakestad ◽  
Morgane Vacher

Chemiexcitation, the generation of electronic excited states by a thermal reaction initiated on the ground state, is an essential step in chemiluminescence, and it is mediated by the presence of a conical intersection that allows a nonadiabatic transition from ground state to excited state. Conical intersections classified as sloped favor chemiexcitation over ground state relaxation. The chemiexcitation yield of 1,2-dioxetanes is known to increase upon methylation. In this work we explore to which extent this trend can be attributed to changes in the conical intersection topography or accessibility. Since conical intersections are not isolated points, but continuous seams, we locate regions of the conical intersection seams that are close to the configuration space traversed by the molecules as they react on the ground state. We find that conical intersections are energetically and geometrically accessible from the reaction trajectory, and that topographies favorable to chemiexcitation are found in all three molecules studied. Nevertheless, the results suggest that dynamic effects are more important for explaining the different yields than the static features of the potential energy surfaces.


Author(s):  
Yeonsig Nam ◽  
Daniel Keefer ◽  
Artur Nenov ◽  
Irene Conti ◽  
Flavia Aleotti ◽  
...  

2021 ◽  
Vol 75 (12) ◽  
Author(s):  
Hans-Georg Weber

Abstract The theory of large extra compactified dimensions of space (ADD-model) predicts that gravity may become strong in a compactification space of the size of a molecule and may affect the vibrational motion of a molecule. In triatomic molecules like $$\hbox {NO}_{{2}}$$ NO 2 nuclear dynamics is strongly coupled to electronic dynamics at the intersection of electronic states (conical intersection). We discuss experimental results on $$\hbox {NO}_{{2}}$$ NO 2 which reveal that the collision-free molecule optically excited into a symmetric stretch vibration mode of an electronic state with conical intersection undergoes an irreversible non-radiative transition into an asymmetric stretch vibration mode in combination with a change of the electronic state. We suggest ascribing this irreversible non-radiative transition to a gravitational perturbation on the vibrational motion in $$\hbox {NO}_{{2}}$$ NO 2 . This gravitational perturbation deactivates the upper state of the optical transition. The width of the absorption line is given by the characteristic time of the gravitational perturbation and not by the radiative lifetime of the excited molecular state. Graphical abstract


2021 ◽  
Vol 118 (47) ◽  
pp. e2116868118
Author(s):  
Bing Gu ◽  
Daniel Keefer ◽  
Flavia Aleotti ◽  
Artur Nenov ◽  
Marco Garavelli ◽  
...  

We demonstrate how two-photon excitation with quantum light can influence elementary photochemical events. The azobenzene trans → cis isomerization following entangled two-photon excitation is simulated using quantum nuclear wave packet dynamics. Photon entanglement modulates the nuclear wave packets by coherently controlling the transition pathways. The photochemical transition state during passage of the reactive conical intersection in azobenzene photoisomerization is strongly affected with a noticeable alteration of the product yield. Quantum entanglement thus provides a novel control knob for photochemical reactions. The distribution of the vibronic coherences during the conical intersection passage strongly depends on the shape of the initial wave packet created upon quantum light excitation. X-ray signals that can experimentally monitor this coherence are simulated.


2021 ◽  
Author(s):  
Yusuke Nakakuki ◽  
Takashi Hirose ◽  
Hikaru Sotome ◽  
Min Gao ◽  
Daiki Shimizu ◽  
...  

Helically twisted conductive nanocarbon materials are applicable to optoelectronic and electromagnetic molecular devices working on the nanometer scale. Herein, we report the synthesis of per-peri-perbenzo[5]- and [9]helicenes in addition to previously reported π-extended [7]helicene. The homogeneously π-extended helicenes can be regarded as helically fused oligo-phenanthrenes. The HOMO−LUMO gap decreased significantly from 2.14 to 1.15 eV with increasing helical length, suggesting the large effective conjugation length (ECL) of the π-extended helical framework. The large ECL of π-extended helicenes is attributed to the large orbital interactions between the phenanthrene subunits at the 9- and 10-positions, which form a polyene-like electronic structure. Based on the experimental results and DFT calculations, the ultrafast decay dynamics on the sub-picosecond timescale were attributed to the low-lying conical intersection.


Nature ◽  
2021 ◽  
Author(s):  
A. Hosseinizadeh ◽  
N. Breckwoldt ◽  
R. Fung ◽  
R. Sepehr ◽  
M. Schmidt ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document