soil matric potential
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 21)

H-INDEX

25
(FIVE YEARS 2)

Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 79
Author(s):  
Vahideh Biareh ◽  
Farid Shekari ◽  
Saeed Sayfzadeh ◽  
Hamidreza Zakerin ◽  
Esmaeil Hadidi ◽  
...  

Limited water stress is one of the most important environmental stresses that affect the growth, quantity and quality of agronomic crops. This study was undertaken to investigate the effect of foliar applied salicylic acid (SA) on physiological responses, antioxidant enzymes and qualitative traits of Cucurbita pepo L. Plants exposed to water-stressed conditions in two years of field studies. Irrigation regimes at three soil matric potential levels (−0.3, −1.2 and −1.8 MPa) and SA at four levels (0.0, 0.5, 1.0 and 1.5 mg/L) were considered as main plot and sub-plots, respectively. The soil matric potential values (MPa) was measured just before irrigation. Results showed that under water stressed conditions alone, the amounts of malondialdehyde (MDA), hydrogen peroxide (H2O2) and ion leakage were higher compared with control treatment. However, spraying of SA under both water stress and non-stress conditions reduced the values of the above parameters. Water stress increased CAT, APX and GR enzymes activity. However foliar application of SA led to the decrease of CAT, APX and GR under all soil matric potential levels. The amount of carbohydrates and fatty acids increased with the intensity of water stress and SA modulated this response. By increasing SA concentration both in optimum and stress conditions, saturated fatty acids content decreased. According to our data, the SA application is an effective approach to improve pumpkin growth under water stress conditions.


2021 ◽  
Vol 14 (6) ◽  
pp. 3269-3294
Author(s):  
Anna B. Harper ◽  
Karina E. Williams ◽  
Patrick C. McGuire ◽  
Maria Carolina Duran Rojas ◽  
Debbie Hemming ◽  
...  

Abstract. Drought is predicted to increase in the future due to climate change, bringing with it myriad impacts on ecosystems. Plants respond to drier soils by reducing stomatal conductance in order to conserve water and avoid hydraulic damage. Despite the importance of plant drought responses for the global carbon cycle and local and regional climate feedbacks, land surface models are unable to capture observed plant responses to soil moisture stress. We assessed the impact of soil moisture stress on simulated gross primary productivity (GPP) and latent energy flux (LE) in the Joint UK Land Environment Simulator (JULES) vn4.9 on seasonal and annual timescales and evaluated 10 different representations of soil moisture stress in the model. For the default configuration, GPP was more realistic in temperate biome sites than in the tropics or high-latitude (cold-region) sites, while LE was best simulated in temperate and high-latitude (cold) sites. Errors that were not due to soil moisture stress, possibly linked to phenology, contributed to model biases for GPP in tropical savanna and deciduous forest sites. We found that three alternative approaches to calculating soil moisture stress produced more realistic results than the default parameterization for most biomes and climates. All of these involved increasing the number of soil layers from 4 to 14 and the soil depth from 3.0 to 10.8 m. In addition, we found improvements when soil matric potential replaced volumetric water content in the stress equation (the “soil14_psi” experiments), when the critical threshold value for inducing soil moisture stress was reduced (“soil14_p0”), and when plants were able to access soil moisture in deeper soil layers (“soil14_dr*2”). For LE, the biases were highest in the default configuration in temperate mixed forests, with overestimation occurring during most of the year. At these sites, reducing soil moisture stress (with the new parameterizations mentioned above) increased LE and increased model biases but improved the simulated seasonal cycle and brought the monthly variance closer to the measured variance of LE. Further evaluation of the reason for the high bias in LE at many of the sites would enable improvements in both carbon and energy fluxes with new parameterizations for soil moisture stress. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES or as a general way to improve land surface carbon and water fluxes in other models. In addition, using soil matric potential presents the opportunity to include plant functional type-specific parameters to further improve modeled fluxes.


Author(s):  
Chen Zhang ◽  
Xiaobin Li ◽  
Yaohu Kang

A four-year field experiment was carried out to evaluate an integrated use of saline water for the saline soil reclamation in Hebei Province of North China. A landscape shrub (Caryopteris × clandonensis ‘Worcester Gold’) was cultivated using drip irrigation scheduled by rootzone soil matric potential control at five levels of water salinity (ECi): 0.8, 3.1, 4.7, 6.3, and 7.8 dS·m−1. Soil matric potential control was applied using a threshold of −5, −10, −15, and −20 kPa in the first, second, third, and fourth year, respectively. After four growing seasons, the saline soil (initial ECe value of 27.8 dS·m−1) was reclaimed to slightly saline soil for 0–1 m depth (4.1–7.2 dS·m−1) under drip irrigation with saline water of ECi < 7.8 dS·m−1. The salt leaching efficiency of root zone soil was highest in the first year and lowered year-by-year. The plants strongly responded to the different soil water and salinity regime. Significant decreases in survival rate, plant growth, and shoot dry weight in response to increasing ECi were found. To achieve a relative survival rate of >50%, the threshold salinity of irrigation water for ‘Worcester Gold’ cultivation was 7.8, 7.0, 5.6, and 5.3 dS·m–1, for the first, second, third, and fourth growing season, respectively. It is recommended to use an inter-seasonal evolving matric potential threshold of −10 kPa for dry season of the third year, −15 kPa for rainy season of the third year and dry season of the fourth year, and −20 kPa for rainy season of the fourth year.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 352
Author(s):  
Jean-Pascal Matteau ◽  
Paul Célicourt ◽  
Guillaume Létourneau ◽  
Thiago Gumiere ◽  
Silvio J. Gumiere

Potato is one of the most cropped plants worldwide. Hundreds of different varieties are cultivated only in North America. Potato growers usually crop multiple varieties on their farms to answer the market demands for potato’s specific physical properties. However, few pieces of information are available regarding the optimal management of irrigation across potato varieties. Knowing that modern potatoes share genetics similarities, the optimal irrigation comfort zone for the potato crop might be the same for different groups of varieties. This study evaluates the effect of precision irrigation thresholds on the potato yields of three varieties (Envol: very early, Kalmia: early, and Red Maria: mid-late) with different maturity classes. In a greenhouse, a soil matric potential sensor network used in combination with a precise irrigation system allows the identification of a common optimal precision irrigation threshold, allowing optimal yields for the three varieties. This paper presents the first identification of an optimal irrigation threshold, −15 kPa, shared by different potato varieties. The optimal irrigation threshold identified in this study is not dependent on the maturity class, plant height or tuber potential production. The determination of an optimal precision irrigation threshold will allow potato growers to adapt their farm management processes to integrate more sustainable water management practices as they will be able to irrigate a field with multiple varieties with the same threshold.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 190
Author(s):  
Juana I. Contreras ◽  
Rafael Baeza ◽  
José G. López ◽  
Gema Cánovas ◽  
Francisca Alonso

Water and nutrient requirements of horticultural crops are influenced by different factors such as: Type of crop, stage of development and production system. Although greenhouse horticultural crops are more efficient in the use of water and fertilizers compared to other production systems, it is necessary increase efficiency for which individualized fertigation strategies must be designed for each greenhouse. The automation of fertigation based on the level of soil moisture allows optimization of management. The objective of this work was to determine the influence of the activation command of fertigation with electrotensiometers and the characteristics of the greenhouse on the productivity of the crop and the efficiency of use of water and nutrients in a sweet pepper crop. The trial was developed in two greenhouses. Four treatments were studied, combination of who two-factor: Soil matric potential (SMP) (SMP−10: Automatic activation of irrigation to −10 kPa and SMP−20: Automatic activation of irrigation to −20 kPa) and greenhouse characteristics (G1 and G2). The nutritive solution applied was the same in all treatments. The yield and volume of water and nutrients applied were determined, calculating the productivity of the water (WP), as well as productivity the nutrients. The fertigation activation threshold of −10 kPa presented the best results, increasing the yield and conserving WP and nutrient productivity with respect to −20 kPa in both greenhouses. The automation of irrigation with electrotensiometers allowed the application of different volume of fertigation demanded by the crop in each greenhouse, equalizing the WP and nutrient productivity without producing drainage. The pepper crop in the greenhouse G1 presented greater vegetative development, higher yield and demanded a greater volume of fertigation than G2 regardless of the activation threshold. This was due to the fact that the soil matric potential after irrigation in greenhouse G1 was closer to zero, being able to conclude that not only the soil matric potential threshold of irrigation activation has an influence on crop, but also the potential registered after irrigation. Soil matric potentials closer to zero are more productive.


Food Research ◽  
2020 ◽  
Vol 4 (S6) ◽  
pp. 60-63
Author(s):  
E.J. Magero ◽  
K. Unami ◽  
O. Mohawesh ◽  
M. Yamaguchi ◽  
M. Fujihara

Scientific analysis of plant growth helps in improving the efficiency of cultivation practices through optimization of their environmental conditions. The ultimate aim of this research was to derive an optimal policy for better growth of date palms by considering its dynamical response to environmental parameters such as solar radiation, soil moisture, and temperature. Field experiments were conducted at an irrigation scheme located in the Jordan Rift Valley. A drip irrigation system is installed to water ten trees of date palms either with fresh or saline water depending on the soil matric potential. The circumference of the trunk of a tree was measured using a dendrometer at 30 mins interval and recorded in a data logger. Environmental parameters including the soil matric potential, solar radiation, and soil temperature were also logged every 30 mins. This study focused on determining a nonlinear model representing the growth dynamics of the date palm tree responding to those environmental parameters. The linear regression was applied to estimate the kernel coefficients of discrete Volterra series modeling the time series. The non-linearity of the model is expected to explain diurnal shrinkage and swelling of the tree trunk under different environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document