neonatal exposure
Recently Published Documents


TOTAL DOCUMENTS

579
(FIVE YEARS 61)

H-INDEX

58
(FIVE YEARS 5)

2021 ◽  
pp. 107053
Author(s):  
Patrick Miller-Rhodes ◽  
Nadine Piazza ◽  
Anna Mattle ◽  
Eric Teboul ◽  
Megan Ehmann ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Kazuhiko Sawada ◽  
Shiori Kamiya ◽  
Ichio Aoki

Prenatal and neonatal exposure to valproic acid (VPA) is associated with human autism spectrum disorder (ASD) and can alter the development of several brain regions, such as the cerebral cortex, cerebellum, and amygdala. Neonatal VPA exposure induces ASD-like behavioral abnormalities in a gyrencephalic mammal, ferret, but it has not been evaluated in brain regions other than the cerebral cortex in this animal. This study aimed to facilitate a comprehensive understanding of brain abnormalities induced by developmental VPA exposure in ferrets. We examined gross structural changes in the hippocampus and tracked proliferative cells by 5-bromo-2-deoxyuridine (BrdU) labeling following VPA administration to ferret infants on postnatal days (PDs) 6 and 7 at 200 μg/g of body weight. Ex vivo short repetition time/time to echo magnetic resonance imaging (MRI) with high spatial resolution at 7-T was obtained from the fixed brain of PD 20 ferrets. The hippocampal volume estimated using MRI-based volumetry was not significantly different between the two groups of ferrets, and optical comparisons on coronal magnetic resonance images revealed no differences in gross structures of the hippocampus between VPA-treated and control ferrets. BrdU-labeled cells were observed throughout the hippocampus of both two groups at PD 20. BrdU-labeled cells were immunopositive for Sox2 (>70%) and almost immunonegative for NeuN, S100 protein, and glial fibrillary acidic protein. BrdU-labeled Sox2-positive progenitors were abundant, particularly in the subgranular layer of the dentate gyrus (DG), and were denser in VPA-treated ferrets. When BrdU-labeled Sox2-positive progenitors were examined at 2 h after the second VPA administration on PD 7, their density in the granular/subgranular layer and hilus of the DG was significantly greater in VPA-treated ferrets compared to controls. The findings suggest that VPA exposure to ferret infants facilitates the proliferation of DG progenitors, supplying excessive progenitors for hippocampal adult neurogenesis to the subgranular layer.


Author(s):  
Joe Jongpyo Lim ◽  
Moumita Dutta ◽  
Joseph L Dempsey ◽  
Hans-Joachim Lehmler ◽  
James MacDonald ◽  
...  

Abstract Recent evidence suggests that complex diseases can result from early life exposure to environmental toxicants. Polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) and remain a continuing risk to human health despite being banned from production. Developmental BPA exposure mediated-adult onset of liver cancer via epigenetic reprogramming mechanisms has been identified. Here, we investigated whether the gut microbiome and liver can be persistently reprogrammed following neonatal exposure to POPs, and the associations between microbial biomarkers and disease-prone changes in the hepatic transcriptome in adulthood, compared to BPA. C57BL/6 male and female mouse pups were orally administered vehicle, BPA, BDE-99 (a breast milk-enriched PBDE congener), or the Fox River PCB mixture (PCBs), once daily for three consecutive days (postnatal days [PND] 2 to 4). Tissues were collected at PND5 and PND60. Among the three chemicals investigated, early life exposure to BDE-99 produced the most prominent developmental reprogramming of the gut-liver axis, including hepatic inflammatory and cancer-prone signatures. In adulthood, neonatal BDE-99 exposure resulted in a persistent increase in Akkermansia muciniphila throughout the intestine, accompanied by increased hepatic levels of acetate and succinate, the known products of A. muciniphila. In males, this was positively associated with permissive epigenetic marks H3K4me1 and H3K27, which were enriched in loci near liver cancer-related genes that were dysregulated following neonatal exposure to BDE-99. Our findings provide novel insights that early life exposure to POPs can have a life-long impact on disease risk, which may partly be regulated by the gut microbiome.


2021 ◽  
Vol 3 (8) ◽  
pp. 1042-1057 ◽  
Author(s):  
Benedikt Hild ◽  
Matthew S. Dreier ◽  
Ji Hoon Oh ◽  
John A. McCulloch ◽  
Jonathan H. Badger ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koji Iwanaga ◽  
Yasushi Satoh ◽  
Ryosuke Akai ◽  
Toshiaki Ishizuka ◽  
Tomiei Kazama ◽  
...  

AbstractIn animal models, neonatal exposure of general anaesthetics significantly increases apoptosis in the brain, resulting in persistent behavioural deficits later in adulthood. Consequently, there is growing concern about the use of general anaesthetics in obstetric and paediatric practice. JM-1232(−) has been developed as a novel intravenous anaesthetic, but the effects of JM-1232(−) on the developing brain are not understood. Here we show that neonatal administration of JM-1232(−) does not lead to detectable behavioural deficits in adulthood, contrarily to other widely-used intravenous anaesthetics. At postnatal day 6 (P6), mice were injected intraperitoneally with a sedative-equivalent dose of JM-1232(−), propofol, or midazolam. Western blot analysis of forebrain extracts using cleaved poly-(adenosine diphosphate-ribose) polymerase antibody showed that JM-1232(−) is accompanied by slight but measurable apoptosis 6 h after administration, but it was relatively small compared to those of propofol and midazolam. Behavioural studies were performed in adulthood, long after the neonatal anaesthesia, to evaluate the long-term effects on cognitive, social, and affective functions. P6 administration to JM-1232(−) was not accompanied by detectable long-term behavioural deficits in adulthood. However, animals receiving propofol or midazolam had impaired social and/or cognitive functions. These data suggest that JM-1232(−) has prospects for use in obstetric and paediatric practice.


2021 ◽  
Vol 86 (6) ◽  
pp. 761-772
Author(s):  
Veronika A. Nikitina ◽  
Maria V. Zakharova ◽  
Alexander N. Trofimov ◽  
Alexander P. Schwarz ◽  
Gleb V. Beznin ◽  
...  

Life Sciences ◽  
2021 ◽  
pp. 119751
Author(s):  
Karline da Costa Rodrigues ◽  
Cristiani Folharini Bortolatto ◽  
Renata Leivas de Oliveira ◽  
Jaini Janke Paltian ◽  
Allya Muhammad Eid Larroza ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Patrycja Witek ◽  
Natalia Marek ◽  
Małgorzata Grzesiak ◽  
Maria Słomczyńska ◽  
Katarzyna Knapczyk-Stwora

Abstract Recently, we have demonstrated that neonatal exposure to androgen and estrogen agonists or antagonists influenced the number of ovarian follicles in piglets. Since the FOXL2 transcription factor is required for proper ovarian follicle formation and activation, the objective of the study was to examine effects of exposure of the neonatal porcine ovary to testosterone propionate (TP; an androgen), flutamide (FLU; an antiandrogen), 4-tert-octylphenol (OP; compound with estrogenic activity), ICI 182,780 (ICI; an antiestrogen), and methoxychlor (MXC; compound with estrogenic, antiestrogenic and antiandrogenic properties) on FOXL2 expression and expression of its target genes, AMH and CYP19A1. Piglets were injected subcutaneously with TP, FLU, OP, ICI, MXC, or corn oil (control) between postnatal days 1 and 10 (n = 4/each group). Ovaries were excised from the 11-day-old piglets and the expression of FOXL2, AMH and CYP19A1 were examined using immunohistochemistry and/or real-time PCR and Western blot. FOXL2 was localized in stroma cells surrounding egg nests and in granulosa cells. TP, OP and MXC increased both FOXL2 and AMH mRNAs, while FLU and ICI decreased CYP19A1 mRNA. The increased FOXL2 protein abundance was found in all examined groups. In addition, TP, OP, ICI and MXC increased AMH protein abundance, while TP, FLU and OP decreased CYP19A1 protein abundance. In conclusion, neonatal exposure to sex steroid receptor agonists and antagonists increased FOXL2 expression at mRNA and/or protein levels and affected FOXL2 target genes in the ovaries of 11-day-old piglets. Therefore, it seems that impaired ovarian folliculogenesis induced by altered steroid milieu during the neonatal development period in pigs may, at least in part, involve FOXL2.


Development ◽  
2021 ◽  
Vol 148 (9) ◽  
Author(s):  
Robin M. Perelli ◽  
Matthew L. O'Sullivan ◽  
Samantha Zarnick ◽  
Jeremy N. Kay

ABSTRACT Angiogenesis in the developing mammalian retina requires patterning cues from astrocytes. Developmental disorders of retinal vasculature, such as retinopathy of prematurity (ROP), involve arrest or mispatterning of angiogenesis. Whether these vascular pathologies involve astrocyte dysfunction remains untested. Here, we demonstrate that the major risk factor for ROP – transient neonatal exposure to excess oxygen – disrupts formation of the angiogenic astrocyte template. Exposing newborn mice to elevated oxygen (75%) suppressed astrocyte proliferation, whereas return to room air (21% oxygen) at postnatal day 4 triggered extensive proliferation, massively increasing astrocyte numbers and disturbing their spatial patterning prior to the arrival of developing vasculature. Proliferation required astrocytic HIF2α and was also stimulated by direct hypoxia (10% oxygen), suggesting that astrocyte oxygen sensing regulates the number of astrocytes produced during development. Along with astrocyte defects, return to room air also caused vascular defects reminiscent of ROP. Strikingly, these vascular phenotypes were more severe in animals that had larger numbers of excess astrocytes. Together, our findings suggest that fluctuations in environmental oxygen dysregulate molecular pathways controlling astrocyte proliferation, thereby generating excess astrocytes that interfere with retinal angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document