matrix degradation
Recently Published Documents


TOTAL DOCUMENTS

740
(FIVE YEARS 199)

H-INDEX

74
(FIVE YEARS 7)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Mingzhi Luo ◽  
Grace Cai ◽  
Kenneth K. Y. Ho ◽  
Kang Wen ◽  
Zhaowen Tong ◽  
...  

Abstract Background Uncontrolled growth in solid breast cancer generates mechanical compression that may drive the cancer cells into a more invasive phenotype, but little is known about how such compression affects the key events and corresponding regulatory mechanisms associated with invasion of breast cancer cells including cellular behaviors and matrix degradation. Results Here we show that compression enhanced invasion and matrix degradation of breast cancer cells. We also identified Piezo1 as the putative mechanosensitive cellular component that transmitted compression to not only enhance the invasive phenotype, but also induce calcium influx and downstream Src signaling. Furthermore, we demonstrated that Piezo1 was mainly localized in caveolae, and both Piezo1 expression and compression-enhanced invasive phenotype of the breast cancer cells were reduced when caveolar integrity was compromised by either knocking down caveolin1 expression or depleting cholesterol content. Conclusions Taken together, our data indicate that mechanical compression activates Piezo1 channels to mediate enhanced breast cancer cell invasion, which involves both cellular events and matrix degradation. This may be a critical mechanotransduction pathway during breast cancer metastasis, and thus potentially a novel therapeutic target for the disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hui Liu ◽  
Tingting Zhang ◽  
Min Liu ◽  
Chunhong Wang ◽  
Jinfeng Yan

Silent mating type information regulation 2 homolog 1 (SIRT1) has been reported to inhibit osteoarthritic gene expression in chondrocytes. Here, efforts in this study were made to unveil the specific role of SIRT1 in the therapy of acupuncture on cartilage degeneration in osteoarthritis (OA). Specifically, OA was established by the anterior cruciate ligament transection method in the right knee joint of rats, subsequent to which acupuncture was performed on two acupoints. Injection with shSIRT1 sequence–inserted lentiviruses was conducted to investigate the role of SIRT1 in acupuncture-mediated OA. Morphological changes and cell apoptosis in rat OA cartilages were examined by safranin-O staining and terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) assay, respectively. The serum levels of tumor necrosis factor (TNF)-α and interleukin (IL)-2 in OA rats were assessed by enzyme-linked immunosorbent assay (ELISA). The expressions of SIRT1, cartilage matrix degradation-related proteins (matrix metalloproteinase (MMP)-9 and ADAMTS5), NF-κB signaling-related markers (p-p65/p65 and p-IκBα/IκBα), and cartilage matrix synthesis-related proteins (collagen II and aggrecan) in the OA cartilage were analyzed by western blot. As a result, acupuncture counteracted OA-associated upregulation of TNF-α, IL-2, cartilage matrix degradation-related proteins, and NF-κB signaling-related markers, morphological damage, apoptosis, SIRT1 downregulation, and loss of cartilage matrix synthesis-related proteins in rat articular cartilages. SIRT1 silencing reversed acupuncture-induced counteractive effects on the aforementioned OA-associated phenomena (except apoptosis, the experiment regarding which under SIRT1 silencing was not performed). Collectively, acupuncture inhibited chondrocyte apoptosis, inflammation, NF-κB signaling activation, and cartilage matrix degradation by upregulating SIRT1 expression to delay OA-associated cartilage degeneration.


2021 ◽  
Author(s):  
pengfei xue ◽  
Guanyin Wu ◽  
huricha jin ◽  
jiawei jiang ◽  
Mo zhang ◽  
...  

Abstract Facet joint osteoarthritis (FJOA) is one of the common causes of low back pain, but the molecular mechanism is still unclear. Previous studies have found that P2X7 receptor has been proved to play an important role in skeletal and joint diseases. The purpose of this study was to explore the role of A740003, selective P2X7R antagonist, in the development of FJOA. Our study found that A740003 can inhibit the expression of P2X7R in OA chondrocytes. It can lead to anti-inflammatory and anti-apoptotic effects in primary chondrocytes by IL-1β/BzATP. Our results imply that decreased P2X7R can reverse chondrocyte apoptosis and prevent extracellular matrix degradation by NF-KB pathway. Moreover, in our present work, we found that A740003 inhibit the abrrently activation of NF-KB pathway by preventing the activated P65 translocation to nucleus. Our results indicate that P2X7R is a therapeutic target for the treatment of FJOA, and that A740003 could be a therapeutic candidate for this clinical application.


Sign in / Sign up

Export Citation Format

Share Document