shape transition
Recently Published Documents


TOTAL DOCUMENTS

314
(FIVE YEARS 44)

H-INDEX

40
(FIVE YEARS 4)

Author(s):  
Atsushi Fujimori ◽  
Kotaro Oh-kiri ◽  
Shinsuke Oh-hara

<p>This paper presents a formation shape transition technique of multiple mobile robots in the leader-follower method as a new function that gives flexibility to the formation control of mobile robots with multiple sonars. First, we propose basic shape transition methods for the case of two mobile robots under formation control by the leader-follower method, and then extend the methods to the shape transition of three mobile robots. Since the multiple sonars attached to the mobile robot are located forward, including the left and right sides, there is a constraint on the formation shape feasible by the leader - follower method. In the case of two mobile robots, the follower must be positioned behind the leader. Therefore, there are three shapes of the follower relative to the leader: line, right-back, left-back. In the case of three mobile robots, t hree types of line, zigzag, triangle shapes are considered. The effectiveness of the proposed technique is demonstrated by experiments using real mobile robots.</p>


Author(s):  
Pankaj Kumar ◽  
Virender Thakur ◽  
Shashi K. Dhiman

We have employed the relativistic Hartree-Bogoliubov (RHB) model with density-dependent meson-exchange interaction and separable pairing to investigate neutron dripline mechanisms for heavy Mg isotopes. In the present study, 40Mg is predicted to be dripline nuclei. The calculations are carried out by taking axial deformation into account. An investigation of shape transition is also done for even-even 32-42Mg isotopes. Our prediction for neutron dripline for 40Mg is consistent with some recent studies.


Author(s):  
H. Rodrigues ◽  
J. A. Rosero-Gil ◽  
A. M. Endler ◽  
S. B. Duarte ◽  
M. Chiapparini

We describe the dynamical behavior of newborn neutron stars modelled as homogeneous rotating spheroids. The dynamical evolution is triggered by the escape of trapped neutrinos, providing the initial equilibrium configuration. It is shown that for a given set of values of the initial angular momentum, a shape transition to a triaxial ellipsoid configuration occurs. Gravitational waves are then generated by the breaking of the axial symmetry, and some aspects of their observation are discussed. We found a narrow window for both, the initial values of the angular frequency and the eccentricity, able to enable a dynamical shape transition, with their upper bound determined by the Kepler frequency. The energy and angular momentum carried away by the gravitational wave are treated consistently with the solution of the equations of motion of the system.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009685
Author(s):  
Aresh Sahu ◽  
Susnata Karmakar ◽  
Sudipta Halder ◽  
Gaurab Ghosh ◽  
Sayan Acharjee ◽  
...  

Gap junction (GJ) proteins, the primary constituents of GJ channels, are conserved determinants of patterning. Canonically, a GJ channel, made up of two hemi-channels contributed by the neighboring cells, facilitates transport of metabolites/ions. Here we demonstrate the involvement of GJ proteins during cuboidal to squamous epithelial transition displayed by the anterior follicle cells (AFCs) from Drosophila ovaries. Somatically derived AFCs stretch and flatten when the adjacent germline cells start increasing in size. GJ proteins, Innexin2 (Inx2) and Innexin4 (Inx4), functioning in the AFCs and germline respectively, promote the shape transformation by modulating calcium levels in the AFCs. Our observations suggest that alterations in calcium flux potentiate STAT activity to influence actomyosin-based cytoskeleton, possibly resulting in disassembly of adherens junctions. Our data have uncovered sequential molecular events underlying the cuboidal to squamous shape transition and offer unique insight into how GJ proteins expressed in the neighboring cells contribute to morphogenetic processes.


2021 ◽  
Vol 9 ◽  
Author(s):  
Pavel Castro-Villarreal ◽  
J. E. Ramírez

The conformational states of a semiflexible polymer enclosed in a volume V:=ℓ3 are studied as stochastic realizations of paths using the stochastic curvature approach developed in [Rev. E 100, 012503 (2019)], in the regime whenever 3ℓ/ℓp>1, where ℓp is the persistence length. The cases of a semiflexible polymer enclosed in a cube and sphere are considered. In these cases, we explore the Spakowitz–Wang–type polymer shape transition, where the critical persistence length distinguishes between an oscillating and a monotonic phase at the level of the mean-square end-to-end distance. This shape transition provides evidence of a universal signature of the behavior of a semiflexible polymer confined in a compact domain.


Sign in / Sign up

Export Citation Format

Share Document