inorganic nanomaterials
Recently Published Documents


TOTAL DOCUMENTS

389
(FIVE YEARS 166)

H-INDEX

43
(FIVE YEARS 13)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 610
Author(s):  
Seung-Ho Choi ◽  
Joon-Seok Lee ◽  
Won-Jun Choi ◽  
Jae-Woo Seo ◽  
Seon-Jin Choi

Herein, state-of-the-art research advances in South Korea regarding the development of chemical sensing materials and fully integrated Internet of Things (IoT) sensing platforms were comprehensively reviewed for verifying the applicability of such sensing systems in point-of-care testing (POCT). Various organic/inorganic nanomaterials were synthesized and characterized to understand their fundamental chemical sensing mechanisms upon exposure to target analytes. Moreover, the applicability of nanomaterials integrated with IoT-based signal transducers for the real-time and on-site analysis of chemical species was verified. In this review, we focused on the development of noble nanostructures and signal transduction techniques for use in IoT sensing platforms, and based on their applications, such systems were classified into gas sensors, ion sensors, and biosensors. A future perspective for the development of chemical sensors was discussed for application to next-generation POCT systems that facilitate rapid and multiplexed screening of various analytes.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 207
Author(s):  
Toma Fistos ◽  
Irina Fierascu ◽  
Radu Claudiu Fierascu

Cultural heritage (CH) represents human identity and evidence of the existence and activities that people have left over time. In response to the action of aggressive degrading factors, different materials have been developed and used to protect cultural heritage artifacts. The discovery of optimal materials for this purpose also raises several problems, mainly related to their compatibility with the support material, the most important aspect being that they must preserve their aesthetic characteristics. In this context, the present review paper aims to provide a critical discussion about the possibilities of using different inorganic nanomaterials and recipes for the conservation of cultural heritage objects of organic nature (such as paper, wood, and other support materials). In addition, also are covered different aspect concerning protection mechanisms and application methods as well as future perspectives in this area.


2022 ◽  
Author(s):  
Lu Tang ◽  
Aining Zhang ◽  
Ziyao Zhang ◽  
Qingqing Zhao ◽  
Jing Li ◽  
...  

2022 ◽  
Author(s):  
Huilin Hou ◽  
Linli Xu ◽  
Weiyou Yang ◽  
Wai-Yeung Wong

2022 ◽  
pp. 211-231
Author(s):  
Sara Francesconi ◽  
Daniele Schiavi ◽  
Veronica di Lorenzo ◽  
Giorgio Mariano Balestra

2022 ◽  
Author(s):  
Yunping Huang ◽  
Theodore A. Cohen ◽  
Breena M. Sperry ◽  
Helen Larson ◽  
Hao A. Nguyen ◽  
...  

Inorganic–organic interfaces: a tutorial on using organic functional groups to enhance the performances and/or enable new functionality of inorganic nanomaterials.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7902
Author(s):  
Qinfu Zhao ◽  
Xinqian Liu ◽  
Stephen Veldhuis ◽  
Igor Zhitomirsky

Polyvinylidene fluoride (PVDF) is an advanced functional polymer which exhibits excellent chemical and thermal stability, and good mechanical, piezoelectric and ferroelectic properties. This work opens a new strategy for the fabrication of nanocomposites, combining the functional properties of PVDF and advanced inorganic nanomaterials. Electrophoretic deposition (EPD) has been developed for the fabrication of films containing PVDF and nanoparticles of TiO2, MnO2 and NiFe2O4. An important finding was the feasibility of EPD of electrically neutral PVDF and inorganic nanoparticles using caffeic acid (CA) and catechol violet (CV) as co-dispersants. The experiments revealed strong adsorption of CA and CV on PVDF and inorganic nanoparticles, which involved different mechanisms and facilitated particle dispersion, charging and deposition. The analysis of the deposition yield data, chemical structure of the dispersants and the microstructure and composition of the films provided an insight into the adsorption and dispersion mechanisms and the influence of deposition conditions on the deposition rate, film microstructure and composition. PVDF films provided the corrosion protection of stainless steel. Overcoming the limitations of other techniques, this investigation demonstrates a conceptually new approach for the fabrication of PVDF-NiFe2O4 films, which showed superparamagnetic properties. The approach developed in this investigation offers versatile strategies for the EPD of advanced organic-inorganic nanocomposites.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7569
Author(s):  
Chunggeun Park ◽  
Jimin Ham ◽  
Yun Jung Heo ◽  
Won Chul Lee

Epitaxial synthesis of inorganic nanomaterials on pristine 2D materials is of interest in the development of nanostructured devices and nanocomposite materials, but is quite difficult because pristine surfaces of 2D materials are chemically inert. Previous studies found a few exceptions including AuCN, AgCN, CuCN, and Cu0.5Au0.5CN, which can be preferentially synthesized and epitaxially aligned onto various 2D materials. Here, we discover that Au1/2Ag1/2CN forms diamond-shaped nanocrystals epitaxially grown on pristine graphene surfaces. The nanocrystals synthesized by a simple drop-casting method are crystallographically aligned to lattice structures of the underlying graphene. Our experimental investigations on 3D structures and the synthesis conditions of the nanocrystals imply that the rhombic 2D geometries originate from different growth rates depending on orientations along and perpendicular to 1D molecular chains of Au1/2Ag1/2CN. We also perform in situ TEM observations showing that Au1/2Ag1/2CN nanocrystals are decomposed to Au and Ag alloy nanocrystals under electron beam irradiation. Our experimental results provide an additional example of 1D cyanide chain families that form ordered nanocrystals epitaxially aligned on 2D materials, and reveal basic physical characteristics of this rarely investigated nanomaterial.


Sign in / Sign up

Export Citation Format

Share Document