chromosome 3
Recently Published Documents


TOTAL DOCUMENTS

1051
(FIVE YEARS 73)

H-INDEX

56
(FIVE YEARS 4)

2021 ◽  
Vol 74 (3) ◽  
pp. 365-369
Author(s):  
Elifcan Taşdelen ◽  
Ezgi Gökpınar İli ◽  
Şule Altıner ◽  
Ahmet Cevdet Ceylan ◽  
Timur Tuncalı

2021 ◽  
Author(s):  
Florian Krause ◽  
Kourosh Mohebian ◽  
Manuel Delpero ◽  
Deike Hesse ◽  
Ralf Kühn ◽  
...  

AbstractThe Berlin Fat Mouse Inbred (BFMI) line is a model for juvenile obesity. Previous studies on crosses between BFMI and C57Bl/6N (B6N) have identified a recessive defect causing juvenile obesity on chromosome 3 (jObes1). Bbs7 was identified as the most likely candidate gene for the observed effect. Comparative sequence analysis showed a 1578 bp deletion in intron 8 of Bbs7 in BFMI mice. A CTCF-element is located inside this deletion. To investigate the functional effect of this deletion, it was introduced into B6N mice using CRISPR/Cas9. Two mice containing the target deletion were obtained (B6N Bbs7emI8∆1 and Bbs7emI8∆2) and were subsequently mated to BFMI and B6N to generate two families suitable for complementation. Inherited alleles were determined and body composition was measured by quantitative magnetic resonance. Evidence for a partial complementation (13.1–15.1%) of the jObes1 allele by the CRISPR/Cas9 modified B6N Bbs7emI8∆1 and Bbs7emI8∆2 alleles was found. Mice carrying the complementation alleles had a 23–27% higher fat-to-lean ratio compared to animals which have a B6N allele (P(Bbs7emI8∆1) = 4.25 × 10–7; P(Bbs7emI8∆2) = 3.17 × 10–5). Consistent with previous findings, the recessive effect of the BFMI allele was also seen for the B6N Bbs7emI8∆1 and Bbs7emI8∆2 alleles. However, the effect size of the B6N Bbs7emI8∆1 and Bbs7emI8∆2 alleles was smaller than the BFMI allele, and thus showed only a partial complementation. Findings suggest additional variants near Bbs7 in addition to or interacting with the deletion in intron 8.


2021 ◽  
Author(s):  
Franziska Hopfner ◽  
Anja Katharina Tietz ◽  
Viktoria C. Ruf ◽  
Owen Ross ◽  
Koga Shunsuke ◽  
...  

Multiple System Atrophy is a rare neurodegenerative disease with alpha-synuclein aggregation in glial cytoplasmic inclusions and either predominant olivopontocerebellar atrophy or striatonigral degeneration, leading to dysautonomia, parkinsonism, and cerebellar ataxia. One prior genome-wide association study in mainly clinically diagnosed patients with Multiple System Atrophy failed to identify genetic variants predisposing for the disease. Since the clinical diagnosis of Multiple System Atrophy yields a high rate of misdiagnosis when compared to the neuropathological gold standard, we studied common genetic variation in only autopsy-confirmed cases (N = 731) and controls (N = 2,898). The most strongly disease-associated markers were rs16859966 on chromosome 3 (P = 8.6 * 10-7, odds ratio (OR) = 1.58, [95% confidence interval (CI) = 1.32-1.89]), rs7013955 on chromosome 8 (P = 3.7 * 10-6, OR = 1.8 [1.40-2.31]), and rs116607983 on chromosome 4 (P = 4.0 * 10-6, OR = 2.93 [1.86-4.63]), all of which were supported by at least one additional genotyped and several imputed single nucleotide polymorphisms with P-values below 5 * 10-5. The genes closest to the chromosome 3 locus are ZIC1 and ZIC4 encoding the zinc finger proteins of cerebellum 1 and 4 (ZIC1 and ZIC4). Since mutations of ZIC1 and ZIC4 and paraneoplastic autoantibodies directed against ZIC4 are associated with severe cerebellar dysfunction, we conducted immunohistochemical analyses in brain tissue of the frontal cortex and the cerebellum from 24 Multiple System Atrophy patients. Strong immunohistochemical expression of ZIC4 was detected in a subset of neurons of the dentate nucleus in all healthy controls and in patients with striatonigral degeneration, whereas ZIC4 positive neurons were significantly reduced in patients with olivopontocerebellar atrophy. These findings point to a potential ZIC4-mediated vulnerability of neurons in Multiple System Atrophy.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiufen Bu ◽  
Xu Li ◽  
Shihao Zhou ◽  
Liangcheng Shi ◽  
Xuanyu Jiang ◽  
...  

Abstract Background Uniparental disomy (UPD) is defined as an inheritance of two chromosomes from only one of the parents with no representative copy from the other. Paternal-origin UPD of chromosome 3 is a very rare condition, with only five cases of paternal UPD(3) reported. Case presentation Here, we report a prenatal case that is only the second confirmed paternal UPD(3) reported with no apparent disease phenotype. The fetus had a normal karyotype and normal ultrasound features throughout gestation. Copy neutral regions of homozygosity on chromosome 3 were identified by single nucleotide polymorphism (SNP) array. Subsequent SNP array data of parent–child trios showed that the fetus carried complete paternal uniparental isodisomy (isoUPD) of chromosome 3. The parents decided to continue with the pregnancy after genetic counseling, and the neonate had normal physical findings at birth and showed normal development after 1.5 years. Conclusions These findings provided further evidence to confirm that there were no important imprinted genes on paternal chromosome 3 that caused serious diseases and a reference for the prenatal diagnosis and genetic counseling of UPD(3) in the future.


Ophthalmology ◽  
2021 ◽  
Author(s):  
Annemijn P.A. Wierenga ◽  
Niels J. Brouwer ◽  
Maria Chiara Gelmi ◽  
Robert M. Verdijk ◽  
Marc-Henri Stern ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2341
Author(s):  
D. S. Kishor ◽  
Hemasundar Alavilli ◽  
Sang-Choon Lee ◽  
Jeong-Gu Kim ◽  
Kihwan Song

Despite various efforts in identifying the genes governing the white immature fruit skin color in cucumber, the genetic basis of the white immature fruit skin color is not well known. In the present study, genetic analysis showed that a recessive gene confers the white immature fruit skin-color phenotype over the light-green color of a Korean slicer cucumber. High-throughput QTL-seq combined with bulked segregation analysis of two pools with the extreme phenotypes (white and light-green fruit skin color) in an F2 population identified two significant genomic regions harboring QTLs for white fruit skin color within the genomic region between 34.1 and 41.67 Mb on chromosome 3, and the genomic region between 12.2 and 12.7 Mb on chromosome 5. Further, nonsynonymous SNPs were identified with a significance of p < 0.05 within the QTL regions, resulting in eight homozygous variants within the QTL region on chromosome 3. SNP marker analysis uncovered the novel missense mutations in Chr3CG52930 and Chr3CG53640 genes and showed consistent results with the phenotype of light-green and white fruit skin-colored F2 plants. These two genes were located 0.5 Mb apart on chromosome 3, which are considered strong candidate genes. Altogether, this study laid a solid foundation for understanding the genetic basis and marker-assisted breeding of immature fruit skin color in cucumber.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2125
Author(s):  
Ester Sales ◽  
Eva Miedes ◽  
Luis Marqués

In temperate areas, rice deals with low temperatures that can affect plant growth and crop yield. Rapid germination is required for adequate plant establishment in the field, therefore obtaining cultivars that maintain this phenotype under suboptimal temperature conditions is a challenge for rice breeders. Our study aimed to investigate temperature-induced expression changes in genes underlying quantitative trait loci (QTLs) associated to this trait (low temperature germinability, LTG) that were detected in a previous genome wide association study (GWAS). In the context of a breeding program for japonica rice cultivars adapted to cultivation in Spain, we obtained two biparental families of lines derived from hybridization with two cold tolerant Italian cultivars, and we have studied the effect on the LTG phenotype of introgressing these QTLs. A wide region in chromosome 3 was related to significant increases in seedling growth rate at 15 °C, although the extent of the effect depended on the analyzed family. In parallel, we studied the pattern of expression during germination at different temperatures of 10 genes located in the LTG-associated QTLs, in five japonica rice cultivars and in a biparental family of recombinant inbred lines (RILs). Cold induced changes in the expression of the 10 analyzed genes, with significant differences among genotypes. Variation in LTG phenotype was consistently associated with changes in the pattern of expression of five genes from the tagged regions in rice chromosome 3, which encoded for enzymes implicated in phytohormone metabolism (OsFBK12, Os3Bglu6), oxidative stress (SPL35, OsSRO1c) and Mn homeostasis maintenance (OsMTP8.1). Differential expression induced by cold in two regulatory genes (Os02g0824000 and Os06g06400) also contributed to explain low temperature tolerance during rice germination. In conclusion, introgression in defective cultivars of favorable alleles for these genes would contribute to the genetic improvement of LTG in japonica rice varieties.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2623
Author(s):  
Dana Zeid ◽  
Sean Mooney-Leber ◽  
Laurel R. Seemiller ◽  
Lisa R. Goldberg ◽  
Thomas J. Gould

Variants in a gene cluster upstream-adjacent to TERC on human chromosome 3, which includes genes APRM, LRRC31, LRRC34 and MYNN, have been associated with telomere length in several human populations. Currently, the mechanism by which variants in the TERC gene cluster influence telomere length in humans is unknown. Given the proximity between the TERC gene cluster and TERC (~0.05 Mb) in humans, it is speculated that cluster variants are in linkage disequilibrium with a TERC causal variant. In mice, the Terc gene/Terc gene cluster are also located on chromosome 3; however, the Terc gene cluster is located distantly downstream of Terc (~60 Mb). Here, we initially aim to investigate the interactions between genotype and nicotine exposure on absolute liver telomere length (aTL) in a panel of eight inbred mouse strains. Although we found no significant impact of nicotine on liver aTL, this first experiment identified candidate single nucleotide polymorphisms (SNPs) in the murine Terc gene cluster (within genes Lrrc31, Lrriq4 and Mynn) co-varying with aTL in our panel. In a second experiment, we tested the association of these Terc gene cluster variants with liver aTL in an independent panel of eight inbred mice selected based on candidate SNP genotype. This supported our initial finding that Terc gene cluster polymorphisms impact aTL in mice, consistent with data in human populations. This provides support for mice as a model for telomere dynamics, especially for studying mechanisms underlying the association between Terc cluster variants and telomere length. Finally, these data suggest that mechanisms independent of linkage disequilibrium between the Terc/TERC gene cluster and the Terc/TERC gene mediate the cluster’s regulation of telomere length.


2021 ◽  
pp. mcs.a006111
Author(s):  
Weitao Lin ◽  
Aaron B. Beasley ◽  
Nima Mesbah Ardakani ◽  
Elena Denisenko ◽  
Leslie Calapre ◽  
...  

Tumour heterogeneity is a major obstacle to the success of cancer treatment. An accurate understanding and recognition of tumour heterogeneity is critical in the clinical management of cancer patients. Here, we utilised single-cell RNA sequencing (scRNA-seq) to uncover the intra- and inter-tumoural heterogeneity of liver metastases from a patient with metastatic uveal melanoma. The two metastases analysed were largely infiltrated by non-cancerous cells with significant variability in the proportion of different cell types. Analysis of copy number variations (CNVs) showed gain of 8q and loss of 6q in both tumours, but loss of chromosome 3 was only detected in one of the tumours. SNP array revealed a uniparental isodisomy 3 in the tumour with two copies of chromosome 3, indicating a re-gain of chromosome 3 during the development of the metastatic disease. In addition, both tumours harboured subclones with additional CNVs. Pathway enrichment analysis of differentially expressed genes revealed that cancer cells in the metastasis with isodisomy 3 showed up-regulation in epithelial-mesenchymal transition and myogenesis related genes. In contrast, upregulation in interferon signalling was observed in the metastasis with monosomy 3 and increased T-cell infiltrate. This study highlights the complexity and heterogeneity of different metastases within an individual case of uveal melanoma.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4146
Author(s):  
Zahra Souri ◽  
Aart G. Jochemsen ◽  
Annemijn P. A. Wierenga ◽  
Wilma G. M. Kroes ◽  
Rob M. Verdijk ◽  
...  

In Uveal Melanoma (UM), an inflammatory phenotype is strongly associated with the development of metastases and with chromosome 3/BAP1 expression loss. As an increased expression of several Histone Deacetylases (HDACs) was associated with loss of chromosome 3, this suggested that HDAC expression might also be related to inflammation. We analyzed HDAC expression and the presence of leukocytes by mRNA expression in two sets of UM (Leiden and TCGA) and determined the T lymphocyte fraction through ddPCR. Four UM cell lines were treated with IFNγ (50IU, 200IU). Quantitative PCR (qPCR) was used for mRNA measurement of HDACs in cultured cells. In both cohorts (Leiden and TCGA), a positive correlation occurred between expression of HDACs 1, 3 and 8 and the presence of a T-cell infiltrate, while expression of HDACs 2 and 11 was negatively correlated with the presence of tumor-infiltrating macrophages. Stimulation of UM cell lines with IFNγ induced an increase in HDACs 1, 4, 5, 7 and 8 in two out of four UM cell lines. We conclude that the observed positive correlations between HDAC expression and chromosome 3/BAP1 loss may be related to the presence of infiltrating T cells.


Sign in / Sign up

Export Citation Format

Share Document