complement receptor
Recently Published Documents


TOTAL DOCUMENTS

1131
(FIVE YEARS 77)

H-INDEX

75
(FIVE YEARS 8)

mBio ◽  
2022 ◽  
Author(s):  
Christopher J. Day ◽  
Rachael L. Hardison ◽  
Belinda L. Spillings ◽  
Jessica Poole ◽  
Joseph A. Jurcisek ◽  
...  

In women, the lower female reproductive tract is the primary site for HIV infection. How HIV traverses the epithelium to infect CD4 T cells in the submucosa is ill-defined.


2021 ◽  
Author(s):  
Laura Díaz-Alvarez ◽  
Mariana Esther Martinez-Sánchez ◽  
Eleanor Gray ◽  
Enrique Ortega

Upon ligand engagement, certain receptors can activate an integrin through a mechanism called inside-out signalling. This phenomenon prepares the cell for the next steps of the process it will perform. CR3 (Complement receptor 3), the most abundant β2 integrin in monocytes and macrophages, and CD13 (aminopeptidase N) are two immune receptors with overlapping activities: adhesion, phagocytosis of opsonized particles, and respiratory burst induction. They can be found together in functional signalling microdomains, or lipid rafts, on the surface of human leukocytes. Thus, given their common functions, shared physical location and the fact that some phagocytic and adhesion receptors activate a selection of integrins, we hypothesized that CD13 could activate CR3 through an inside-out signalling mechanism. To test this hypothesis, we first ascertained the activation of CR3 after CD13 crosslinking in human monocyte-derived macrophages. We used an integrated analysis of bioinformatics and experimental data to suggest two possible signalling cascades that could explain the phenomenon. Finally, we show that the non-receptor tyrosine kinase Syk is a key attenuator of this pathway. Our results demonstrated that, even in the absence of canonical signalling motifs, and despite having a noticeably short cytoplasmic tail (7-10 amino acids), CD13 was capable of triggering an inside-out signalling cascade, adding a new function to those already known for this moonlighting protein.


mBio ◽  
2021 ◽  
Author(s):  
Wilfried Posch ◽  
Marta Bermejo-Jambrina ◽  
Marion Steger ◽  
Christina Witting ◽  
Gabriel Diem ◽  
...  

Importantly, our study highlights an unusual target on DCs—the α chain of complement receptor 4 (CR4) (CD11c)—for therapeutic interventions in HIV-1 treatment. Targeting CD11c on DCs mediated a potent antiviral immune response via clustering of CR4 and CCR5 and subsequent opening of an antiviral recognition pathway in DCs via MAVS.


2021 ◽  
Author(s):  
Yuanyuan Ma ◽  
Lu Jiang ◽  
Liping Wang ◽  
Yongfang Li ◽  
Yanqun Liu ◽  
...  

Abstract Background: Endothelial progenitor cell (EPC) transplantation has been shown to have therapeutic effects in cerebral ischemia. However, whether the therapeutic effect of EPCs is a result of the modulation of microglia activity remain elusive. Methods: Adult male mice (n=184) underwent 90 minute-middle cerebral artery occlusion and EPCs were transplanted into the peri-infarct region immediately after the surgery. Microglia migration and phagocytosis were evaluated in the ischemic brain in vivo and underwent oxygen-glucose-deprivation culture condition in vitro. Complement receptor 3 was examined in ischemic brain and cultured primary microglia. Complement receptor 3 agonist leukadherin-1 was intraperitoneally injected to mice immediately after ischemia to imitate the EPC effect. Expression of synapse remodeling related synaptophysin and PSD-95 proteins was detected in the EPC and leukadherin-1 treated mice, separately. Results: EPC transplantation increased the number of microglia in the peri-infarct region of the brain at 3 days after focal ischemia (p<0.05). The ability of phagocytizing apoptotic cells of microglia was higher in EPCs transplanted group at 3 days after ischemia compared to the controls (p<0.05). In vitro study showed that cultured microglia displayed a higher migration (p<0.05) and phagocytosis ability (p<0.05) under the stimulation of EPC conditioned medium or cultured EPCs compared to the controls. Complement receptor 3 expression in the ischemic mouse brain with EPC transplantation (p<0.05), and primary microglia treated by EPC conditioned medium or cultured EPCs was up-regulated (p<0.05). Leukadherin-1 reduced brain atrophy volume at 14 days (p<0.05) and ameliorated neurological deficiency during 14 days after cerebral ischemia (p<0.05). Both EPC transplantation and leukadherin-1 injection increased synaptophysin (p<0.05) and PSD-95 expressions (p<0.05) at 14 days after focal ischemia. Conclusion: We concluded that EPC transplantation promoted regulating complement receptor 3 mediated microglial phagocytosis at acute phase, and subsequently benefited for attenuating synaptic loss at the recovery phase of ischemic stroke, which provided a novel therapeutic mechanism of EPC for cerebral ischemia.


2021 ◽  
Vol 43 (2) ◽  
pp. 1081-1089
Author(s):  
Maria G. Detsika ◽  
Elias A. Lianos

In systemic hemolysis and in hematuric forms of kidney injury, the major heme scavenging protein, hemopexin (HPX), becomes depleted, and the glomerular microvasculature (glomeruli) is exposed to high concentrations of unbound heme, which, in addition to causing oxidative injury, can activate complement cascades; thus, compounding extent of injury. It is unknown whether unbound heme can also activate specific complement regulatory proteins that could defend against complement-dependent injury. Isolated rat glomeruli were incubated in media supplemented with HPX-deficient (HPX−) or HPX-containing (HPX+) sera as a means of achieving different degrees of heme partitioning between incubation media and glomerular cells. Expression of heme oxygenase (HO)-1 and of the complement activation inhibitors, decay-accelerating factor (DAF), CD59, and complement receptor-related gene Y (Crry), was assessed by western blot analysis. Expression of HO-1 and of the GPI-anchored DAF and CD59 proteins increased in isolated glomeruli incubated with HPX− sera with no effect on Crry expression. Exogenous heme (hemin) did not further induce DAF but increased Crry expression. HPX modulates heme-mediated induction of complement activation controllers in glomeruli. This effect could be of translational relevance in glomerular injury associated with hematuria.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ayla A. Wahid ◽  
Rhys W. Dunphy ◽  
Alex Macpherson ◽  
Beth G. Gibson ◽  
Liudmila Kulik ◽  
...  

Cleavage of C3 to C3a and C3b plays a central role in the generation of complement-mediated defences. Although the thioester-mediated surface deposition of C3b has been well-studied, fluid phase dimers of C3 fragments remain largely unexplored. Here we show C3 cleavage results in the spontaneous formation of C3b dimers and present the first X-ray crystal structure of a disulphide-linked human C3d dimer. Binding studies reveal these dimers are capable of crosslinking complement receptor 2 and preliminary cell-based analyses suggest they could modulate B cell activation to influence tolerogenic pathways. Altogether, insights into the physiologically-relevant functions of C3d(g) dimers gained from our findings will pave the way to enhancing our understanding surrounding the importance of complement in the fluid phase and could inform the design of novel therapies for immune system disorders in the future.


2021 ◽  
pp. ji2001208
Author(s):  
Rasmus K. Jensen ◽  
Goran Bajic ◽  
Mehmet Sen ◽  
Timothy A. Springer ◽  
Thomas Vorup-Jensen ◽  
...  

2021 ◽  
pp. 1-10
Author(s):  
Ryan Pasiewicz ◽  
Yessenia Valverde ◽  
Raghuvaran Narayanan ◽  
Ji-Hyun Kim ◽  
Muhammad Irfan ◽  
...  

2021 ◽  
pp. 100833
Author(s):  
Carlos Angel Espinosa-Vinals ◽  
Jiri Masin ◽  
Jana Holubova ◽  
Ondrej Stanek ◽  
David Jurnecka ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Christina Lamers ◽  
Carla Johanna Plüss ◽  
Daniel Ricklin

The β2-integrin receptor family has a broad spectrum of physiological functions ranging from leukocyte adhesion, cell migration, activation, and communication to the phagocytic uptake of cells and particles. Among the members of this family, complement receptor 3 (CR3; CD11b/CD18, Mac-1, αMβ2) is particularly promiscuous in its functional profile and ligand selectivity. There are close to 100 reported structurally unrelated ligands for CR3, and while many ligands appear to cluster at the αMI domain, molecular details about binding modes remain largely elusive. The versatility of CR3 is reflected in its functional portfolio, which includes prominent roles in the removal of invaders and cell debris, induction of tolerance and synaptic pruning, and involvement in the pathogenesis of numerous autoimmune and chronic inflammatory pathologies. While CR3 is an interesting therapeutic target for immune modulation due to these known pathophysiological associations, drug development efforts are limited by concerns of potential interference with host defense functions and, most importantly, an insufficient molecular understanding of the interplay between ligand binding and functional impact. Here, we provide a systematic summary of the various interaction partners of CR3 with a focus on binding mechanisms and functional implications. We also discuss the roles of CR3 as an immune receptor in health and disease, as an activation marker in research and diagnostics, and as a therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document