high frequency range
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 36)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Qingqing Meng ◽  
Zihang Zhu ◽  
Tao Lin ◽  
He Li ◽  
Guodong Wang ◽  
...  

Abstract In this paper, a novel and efficient photonic-assisted remote frequency measurement (RFM) system with a significantly simplified structure and flexible operation range is proposed. By simply changing the dispersion coefficient or length of the dispersion medium in the central station (CS), the microwave frequency measurement range in the remote antenna unit (RAU) can be tuned. In this system, the RAU and the CS is separated to ensure the concealment and safety of the signal processing unit. The measurement range of the RFM system can be tuned easily during the measurement process without system reconstruction, and different RAUs located at different places can be controlled to work at the same measurement range. The simulation results show that a frequency measurement over the high frequency range (>18 GHz) can be achieved with a measurement error better than ±0.2 GHz. Noteworthy, the impact of the non-ideal factors such as bias drift, intensity noise, phase noise, the equivalent deviation of the polarization beam splitter (PBS), and the dispersion value of the single mode fiber (SMF) is also discussed. It has been proved that they have little influence on the system performance over the high frequency range.


Author(s):  
Katharina Fitzek ◽  
Ute de Haart ◽  
Qingping Fang ◽  
Werner Lehnert

Abstract Electrochemical impedance spectroscopy (EIS) is commonly used for the characterization of electrochemical systems, such as solid oxide fuel cells (SOFCs). In recent years, the distribution of relaxation times (DRT) analysis has attracted increasing interest as a tool for investigating electrochemical loss mechanisms in fuel cells due to its ability to resolve electrochemical features that overlap in complex planes. Among the methods used for the deconvolution of the distribution function of relaxation times, DRTtools is commonly used due to its user-friendly graphical user interface. In this study, we investigate the root cause of the expression of additional DRT features in the high-frequency range and link them to characteristic properties of the processes that contribute to the polarization loss of SOFCs. Identification of the root cause leading to the expression of the features is performed by conducting a simulation study with synthetic EIS spectra that are then analyzed using DRTtools. It has been shown that the constant phase element behavior of high-frequency processes in SOFCs is the root cause of the expression of additional peaks in the high-frequency range of the DRT.


2021 ◽  
Vol 12 ◽  
Author(s):  
Stefania Sozzi ◽  
Antonio Nardone ◽  
Marco Schieppati

We addressed postural instability during stance with eyes closed (EC) on a compliant surface in healthy young people. Spectral analysis of the centre of foot pressure oscillations was used to identify the effects of haptic information (light-touch, EC-LT), or vision (eyes open, EO), or both (EO-LT). Spectral median frequency was strongly reduced by EO and EO-LT, while spectral amplitude was reduced by all “stabilising” sensory conditions. Reduction in spectrum level by EO mainly appeared in the high-frequency range. Reduction by LT was much larger than that induced by the vision in the low-frequency range, less so in the high-frequency range. Touch and vision together produced a fall in spectral amplitude across all windows, more so in anteroposterior (AP) direction. Lowermost frequencies contributed poorly to geometric measures (sway path and area) for all sensory conditions. The same subjects participated in control experiments on a solid base of support. Median frequency and amplitude of the spectrum and geometric measures were largely smaller when standing on solid than on foam base but poorly affected by the sensory conditions. Frequency analysis but not geometric measures allowed to disclose unique tuning of the postural control mode by haptic and visual information. During standing on foam, the vision did not reduce low-frequency oscillations, while touch diminished the entire spectrum, except for the medium-high frequencies, as if sway reduction by touch would rely on rapid balance corrections. The combination of frequency analysis with sensory conditions is a promising approach to explore altered postural mechanisms and prospective interventions in subjects with central or peripheral nervous system disorders.


Solid Earth ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 2351-2368
Author(s):  
Bogdan Grecu ◽  
Felix Borleanu ◽  
Alexandru Tiganescu ◽  
Natalia Poiata ◽  
Raluca Dinescu ◽  
...  

Abstract. After the World Health Organization declared COVID-19 a pandemic in March 2020, Romania followed the example of many other countries and imposed a series of restrictive measures, including restricting people's mobility and closing social, cultural, and industrial activities to prevent the spread of the disease. In this study, we analyze continuous vertical component recordings from the stations of the Romanian Seismic Network – one of the largest networks in Europe, consisting of 148 stations – to explore the seismic noise variation associated with the reduced human mobility and activity due to the Romanian measures against COVID-19 in detail. We focused our investigation on four frequency bands – 2–8, 4–14, 15–25 and 25–40 Hz – and found that the largest reductions in seismic noise associated with the lockdown correspond to the high-frequency range of 15–40 Hz. We found that all the stations with large reductions in seismic noise (>∼  40 %) are located inside and near schools or in buildings, indicating that at these frequencies the drop is related to the drastic reduction of human activity in these edifices. In the lower-frequency range (2–8 and 4–14 Hz) the variability of the noise reduction among the stations is lower than in the high-frequency range, corresponding to about 35 % on average. This drop is due to reduced traffic during the lockdown, as most of the stations showing such changes in seismic noise in these bands are located within cities and near main or side streets. In addition to the noise reduction observed at stations located in populated areas, we also found seismic noise lockdown-related changes at several stations located far from urban areas, with movement of people in the vicinity of the station explaining the noise reductions.


Author(s):  
А.Ю. БАРАБОШИН ◽  
Д.В. ЛУЧИН ◽  
Е.Н. МАСЛОВ

Рассматривается способ формирования поляризационно-разнесенных радиоволн ДКМВ-диапазона при организации системы MIMO2^2 с использованием компактных турникетных антенн. Приведены результаты оценки эффективности применения поляризационного разнесения, а также сравнительной производительности и помехоустойчивости предложенного и иных способов организации подобных систем. Показаны преимущества использования разработанного технического решения. A method for the formation of polarization-separated HF radio waves in the MIMO2x2 system using compact turnstile antennas is considered. The results of evaluating the effectiveness of the use of polarization diversity, as well as the comparative performance and noise immunity of the proposed and other methods of organizing such systems are presented. The advantages of applying the developed technical solution are shown.


2021 ◽  
Author(s):  
Mallika Datta ◽  
Srijan Das ◽  
Devarun Nath

This chapter includes the mechanism of sound absorption and the classes of sound absorbing material to control the noise. The basic phenomena related to the reduction of sound by allowing it to soak in and dissipate also were introduced first, which, can be realised by viscous effects, heat conduction effects, and internal molecular energy interchanges. Porous absorbers are materials where sound propagates through an interconnected pore network resulting in sound energy dissipation. They are only effective at the mid-to-high frequency range, which is most sensitive to the human ear. The applications of different textile fibres and their various forms were identified later in the chapter. Finally, specific discussions are given to sound parameters, noise absorption coefficient, and its measurement technique. The chapter also deals with various factors influencing sound absorption.


Author(s):  
E.G. Shashkova ◽  
◽  
N.I. Valunets ◽  
M.I. Demidenko ◽  
A.G. Paddubskaya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document