displacement reaction
Recently Published Documents


TOTAL DOCUMENTS

539
(FIVE YEARS 104)

H-INDEX

37
(FIVE YEARS 8)

RSC Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 338-345
Author(s):  
Cuicui Xing ◽  
Xuedong Zheng ◽  
Qiang Zhang

Preemptor blocks the strand displacement reaction by acting on DNA complex, not by directly hybridizing with the worker.


2022 ◽  
Author(s):  
Yan Zhang ◽  
Xue-Ke Du ◽  
Xianwei Su ◽  
Xiaoran Zou ◽  
Chun-Yang Zhang

We design a mismatched fluorescent probe to directly monitor the long noncoding RNA (lncRNA) in living cells. The introduction of mismatched bases in the fluorescent probe greatly enhances the strand...


2021 ◽  
Vol 28 ◽  
Author(s):  
Guang Huan Shen ◽  
Joon Hee Hong

: The present review focuses on the synthesis of cyclic 5-deoxynucleoside phosphonate analogs. The formation of various phosphonate alkyl moieties is accomplished through (i) Wittig (or HWE) type condensation to the nucleoside aldehyde moiety; (ii) nucleophilic displacement reaction using phosphonate anion or Lewis acid; (iii) Arbuzov reaction; (iv) olefin cross-metathesis between vinyl phosphonates and vinylated nucleosides; and (v) radical reaction and Pd catalyzed alkyne. For the coupling of nucleobases with cyclic moieties, the Mitsunobu reaction, and Sonogashira-type cross-coupling are usually applied. For the coupling of furanose moieties with nucleobases, Vorbrüggen-type condensation is generally applied. Addition reactions mediated by selenium ions are mainly applied for the coupling of carbocyclic moieties. Their biological activity results are summarized.


2021 ◽  
Vol 21 (20) ◽  
pp. 15809-15826
Author(s):  
Shuping Zhang ◽  
Golam Sarwar ◽  
Jia Xing ◽  
Biwu Chu ◽  
Chaoyang Xue ◽  
...  

Abstract. We compare Community Multiscale Air Quality (CMAQ) model predictions with measured nitrous acid (HONO) concentrations in Beijing, China, for December 2015. The model with the existing HONO chemistry in CMAQ severely underestimates the observed HONO concentrations with a normalized mean bias of −97 %. We revise the HONO chemistry in the model by implementing six additional heterogeneous reactions in the model: the reaction of nitrogen dioxide (NO2) on ground surfaces, the reaction of NO2 on aerosol surfaces, the reaction of NO2 on soot surfaces, the photolysis of aerosol nitrate, the nitric acid displacement reaction, and the hydrochloric acid displacement reaction. The model with the revised chemistry substantially increases HONO predictions and improves the comparison with observed data with a normalized mean bias of −5 %. The photolysis of HONO enhances daytime hydroxyl radical by almost a factor of 2. The enhanced hydroxyl radical concentrations compare favorably with observed data and produce additional sulfate via the reaction with sulfur dioxide, aerosol nitrate via the reaction with nitrogen dioxide, and secondary organic aerosols via the reactions with volatile organic compounds. The additional sulfate stemming from revised HONO chemistry improves the comparison with observed concentration; however, it does not close the gap between model prediction and the observation during polluted days.


2021 ◽  
Vol 508 ◽  
pp. 230326
Author(s):  
Wenyang Zhou ◽  
Qinghuang Lian ◽  
Xiaokai Huang ◽  
Weiqiang Ding ◽  
Chunhai Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document