autosomal recessive primary microcephaly
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 17)

H-INDEX

17
(FIVE YEARS 1)

2023 ◽  
Vol 83 ◽  
Author(s):  
T. Batool ◽  
S. Irshad ◽  
K. Mahmood

Abstract Autosomal recessive primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by a congenitally reduced head circumference (-3 to -5 SD) and non-progressive intellectual disability. The objective of the study was to evaluate pathogenic mutations in the ASPM gene to understand etiology and molecular mechanism of primary microcephaly. Blood samples were collected from various families across different remote areas of Pakistan from February 2017 to May 2019 who were identified to be affected with primary microcephaly. DNA extraction was performed using the salting-out method; the quality and quantity of DNA were evaluated using spectrophotometry and 1% agarose gel electrophoresis, respectively in University of the Punjab. Mutation analysis was performed by whole exome sequencing from the Cologne Center for Genomics, University of Cologne. Sanger sequencing was done in University of the Punjab to confirm the pathogenic nature of mutation. A novel 4-bp deletion mutation c.3877_3880delGAGA was detected in exon 17 of the ASPM gene in two primary microcephaly affected families (A and B), which resulted in a frame shift mutation in the gene followed by truncated protein synthesis (p.Glu1293Lysfs*10), as well as the loss of the calmodulin-binding IQ domain and the Armadillo-like domain in the ASPM protein. Using the in-silico tools Mutation Taster, PROVEAN, and PolyPhen, the pathogenic effect of this novel mutation was tested; it was predicted to be “disease causing,” with high pathogenicity scores. One previously reported mutation in exon 24 (c.9730C>T) of the ASPM gene resulting in protein truncation (p.Arg3244*) was also observed in family C. Mutations in the ASPM gene are the most common cause of MCPH in most cases. Therefore, enrolling additional affected families from remote areas of Pakistan would help in identifying or mapping novel mutations in the ASPM gene of primary microcephaly.


2021 ◽  
Author(s):  
Khaled Ramadan Ferih ◽  
Ahmed Adel Elsabagh ◽  
Sami Ismail Zaqout ◽  
Angelika Krajewski

Autosomal recessive primary microcephaly (MCPH) consists of a group of disorders characterized by microcephaly and intellectual disability. This study is essential to complement previous findings of MCPH as it helps clarify the role of different genes and proteins involved in the underlying pathophysiology of MCPH. To date, 27 different mutations have been identified. This study defines a number of changes in gene expression occurring in MCPH. This helps deepen our understanding of the effect of MCPH mutations on gene expression. This study also shows the functions of proteins that increase, are unaffected or become dysfunctional due to MCPH. We identified a marked reduction of about 30 proteins with vital roles in several processes including cell cytoskeleton dynamics, cell cycle progression, ciliary functions, and apoptosis. We used Cdk5rap2 (Hartwig’s anemia mice (an/an)), which is a model that closely represents MCPH3. Gel electrophoresis was utilized in order to separate brain proteins. Fixation and protein identification was then done in order to detect changes in the level of the tested proteins


2021 ◽  
Vol 15 ◽  
Author(s):  
Bei Huang ◽  
Xihong Li

Major facilitator superfamily (MFS) is the maximum and most diversified membrane transporter, acting as uniporters, symporters and antiporters. MFS is considered to have a good development potential in the transport of drugs for the treatment of brain diseases. The major facilitator superfamily domain containing protein 2a (Mfsd2a) is a member of MFS. Mfsd2a-knockout mice have shown a marked decrease of docosahexaenoic acid (DHA) level in brain, exhibiting neuron loss, microcephaly and cognitive deficits, as DHA acts essentially in brain growth and integrity. Mfsd2a has attracted more and more attention in the study of nervous system diseases because of its critical role in maintaining the integrity of the blood-brain barrier (BBB) and transporting DHA, including inhibiting cell transport in central nervous system endothelial cells, alleviating BBB injury, avoiding BBB injury in cerebral hemorrhage model, acting as a carrier etc. Up to now, the clinical research of Mfsd2a in nervous system diseases is rare. This article reviewed the current research progress of Mfsd2a in nervous system diseases. It summarized the physiological functions of Mfsd2a in the occurrence and development of intracranial hemorrhage (ICH), Alzheimer’s disease (AD), sepsis-associated encephalopathy (SAE), autosomal recessive primary microcephaly (MCPH) and intracranial tumor, aiming to provide ideas for the basic research and clinical application of Mfsd2a.


2021 ◽  
Vol 9 ◽  
Author(s):  
Niaz Muhammad Khan ◽  
Basharat Hussain ◽  
Chenqing Zheng ◽  
Ayaz Khan ◽  
Muhammad Shareef Masoud ◽  
...  

Microcephaly (MCPH) is a genetically heterogeneous disorder characterized by non-progressive intellectual disability, small head circumference, and small brain size compared with the age- and sex-matched population. MCPH manifests as an isolated condition or part of another clinical syndrome; so far, 25 genes have been linked with MCPH. Many of these genes are reported in Pakistani population, but due to a high rate of consanguinity, a significant proportion of MCPH cohort is yet to be explored. MCPH5 is the most frequently reported type, accounting for up to 68.75% alone in a genetically constrained population like Pakistan. In the current study, whole exome sequencing (WES) was performed on probands from 10 families sampled from South Waziristan and two families from rural areas of the Pakistani Punjab. Candidate variants were validated through Sanger sequencing in all available family members. Variant filtering and in silico analysis identified three known mutations in ASPM, a MCPH5-associated gene. The founder mutation p.Trp1326* was segregating in 10 families, which further confirmed the evidence that it is the most prominent mutation in Pashtun ethnicity living in Pakistan and Afghanistan. Furthermore, the previously known mutations p.Arg3244* and p.Arg1019* were inherited in two families with Punjab ethnic profile. Collectively, this study added 12 more families to the mutational paradigm of ASPM and expanded the Pakistani MCPH cohort.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1441
Author(s):  
En-Ju Chou ◽  
Tang K. Tang

Autosomal recessive primary microcephaly (MCPH) is a complex neurodevelopmental disorder characterized by a small brain size with mild to moderate intellectual disability. We previously demonstrated that human microcephaly RTTN played an important role in regulating centriole duplication during interphase, but the role of RTTN in mitosis is not fully understood. Here, we show that RTTN is required for normal mitotic progression and correct spindle position. The depletion of RTTN induces the dispersion of the pericentriolar protein γ-tubulin and multiple mitotic abnormalities, including monopolar, abnormal bipolar, and multipolar spindles. Importantly, the loss of RTTN altered NuMA/p150Glued congression to the spindle poles, perturbed NuMA cortical localization, and reduced the number and the length of astral microtubules. Together, our results provide a new insight into how RTTN functions in mitosis.


2021 ◽  
pp. jmedgenet-2020-107518
Author(s):  
Ethiraj Ravindran ◽  
Cynthia Gutierrez de Velazco ◽  
Ali Ghazanfar ◽  
Nadine Kraemer ◽  
Abdul Waheed ◽  
...  

BackgroundMinichromosomal maintenance (MCM) complex components 2, 4, 5 and 6 have been linked to human disease with phenotypes including microcephaly and intellectual disability. The MCM complex has DNA helicase activity and is thereby important for the initiation and elongation of the replication fork and highly expressed in proliferating neural stem cells.MethodsWhole-exome sequencing was applied to identify the genetic cause underlying the neurodevelopmental disease of the index family. The expression pattern of Mcm7 was characterised by performing quantitative real-time PCR, in situ hybridisation and immunostaining. To prove the disease-causative nature of identified MCM7, a proof-of-principle experiment was performed.ResultsWe reported that the homozygous missense variant c.793G>A/p.A265T (g.7:99695841C>T, NM_005916.4) in MCM7 was associated with autosomal recessive primary microcephaly (MCPH), severe intellectual disability and behavioural abnormalities in a consanguineous pedigree with three affected individuals. We found concordance between the spatiotemporal expression pattern of Mcm7 in mice and a proliferative state: Mcm7 expression was higher in early mouse developmental stages and in proliferative zones of the brain. Accordingly, Mcm7/MCM7 levels were detectable particularly in undifferentiated mouse embryonal stem cells and human induced pluripotent stem cells compared with differentiated neurons. We further demonstrate that the downregulation of Mcm7 in mouse neuroblastoma cells reduces cell viability and proliferation, and, as a proof-of-concept, that this is counterbalanced by the overexpression of wild-type but not mutant MCM7.ConclusionWe report mutations of MCM7 as a novel cause of autosomal recessive MCPH and intellectual disability and highlight the crucial function of MCM7 in nervous system development.


Author(s):  
Ioannis Papoulidis ◽  
Makarios Eleftheriades ◽  
Emmanouil Manolakos ◽  
Simoni Maria Liapi ◽  
Anastasia Konstantinidou ◽  
...  

MCPH1, otherwise known as the microcephalin gene (*607117) and protein, is a basic regulator of chromosome condensation (BCRT-BRCA1 C-terminus). The Microcephalin protein is made up of three BCRT domains and conserved tandem repeats of interacting phospho-peptide. There is a strong connection between mutations of the MCPH1 and reduced brain growth. Specifically, individuals with such mutations have underdeveloped brains which means smaller size, varying levels of mental retardation, delayed speech and poor language skills, individuals with mild microcephaly and normal intelligence notwithstanding. In this case, a fetus with novel homozygous mutation of the MCPH1 gene ((c.348del)), whose parents were recessive heterozygous for (c.348del), displayed severe microcephaly at 22 weeks of gestation. Due to the effect on splice sites in introns, this mutation causes forming of dysfunctional proteins which lack crucial domains of the C-terminus. Our findings portray an association between the new MCPH1 mutation ((c.348del)) and the clinical features of autosomal recessive primary microcephaly (MCPH) contributing to a broader spectrum related to these pathologies.


2020 ◽  
Vol 10 (3) ◽  
pp. 74-79
Author(s):  
D. M. Guseva ◽  
E. L. Dadali

The article describes the clinical and genetic characteristics of 2 patients from Russia with autosomal recessive primary microcephaly type 2, caused by previously described and newly identified mutations in the WDR62 gene. The data obtained the support the hypothesis that there are no clear correlations between the type and location of the mutation and the severity of clinical manifestations of the disease. There is discussed the possible influence of a mutation in the WDR62 gene on the occurrence of a fibrillar astrocytoma.


2020 ◽  
Vol 63 (12) ◽  
pp. 104096
Author(s):  
Ehsan Razmara ◽  
Homeyra Azimi ◽  
Ali Reza Tavasoli ◽  
Elnaz Fallahi ◽  
Sadaf Valeh Sheida ◽  
...  

Author(s):  
Sami Zaqout ◽  
Lena-Luise Becker ◽  
Ayman Mustafa ◽  
Nadine Krame ◽  
Ulf Strauss ◽  
...  

Autosomal recessive primary microcephaly type 3 (MCPH3) is characterized by congenital microcephaly and intellectual disability. Further features include hyperactivity and seizures. The disease is caused by biallelic mutations in the Cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2. In the mouse, Cdk5rap2 mutations similarly result in reduced brain size and a strikingly thin neocortex already at early stages of neurogenesis that persists through adulthood. The microcephaly phenotype in MCPH arises from a neural stem cell proliferation defect. Here, we report a novel role for Cdk5rap2 in the regulation of dendritic development and synaptogenesis of neocortical layer 2/3 pyramidal neurons using a combined morphological and electrophysiological approach


Sign in / Sign up

Export Citation Format

Share Document