free troposphere
Recently Published Documents


TOTAL DOCUMENTS

647
(FIVE YEARS 116)

H-INDEX

63
(FIVE YEARS 6)

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 94
Author(s):  
Christina-Anna Papanikolaou ◽  
Alexandros Papayannis ◽  
Maria Mylonaki ◽  
Romanos Foskinis ◽  
Panagiotis Kokkalis ◽  
...  

Vertical profiling of aerosol particles was performed during the PANhellenic infrastructure for Atmospheric Composition and climatE chAnge (PANACEA) winter campaign (10 January 2020–7 February 2020) over the city of Ioannina, Greece (39.65° N, 20.85° E, 500 m a.s.l.). The middle-sized city of Ioannina suffers from wintertime air pollution episodes due to biomass burning (BB) domestic heating activities. The lidar technique was applied during the PANACEA winter campaign on Ioannina city, to fill the gap of knowledge of the spatio-temporal evolution of the vertical mixing of the particles occurring during these winter-time air pollution episodes. During this campaign the mobile single-wavelength (532 nm) depolarization Aerosol lIdAr System (AIAS) was used to measure the spatio-temporal evolution of the aerosols’ vertical profiles within the Planetary Boundary Layer (PBL) and the lower free troposphere (LFT; up to 4 km height a.s.l.). AIAS performed almost continuous lidar measurements from morning to late evening hours (typically from 07:00 to 19:00 UTC), under cloud-free conditions, to provide the vertical profiles of the aerosol backscatter coefficient (baer) and the particle linear depolarization ratio (PLDR), both at 532 nm. In this study we emphasized on the vertical profiling of very fresh (~hours) biomass burning (BB) particles originating from local domestic heating activities in the area. In total, 33 out of 34 aerosol layers in the lower free troposphere were characterized as fresh biomass burning ones of local origin, showing a mean particle linear depolarization value of 0.04 ± 0.02 with a range of 0.01 to 0.09 (532 nm) in a height region 1.21–2.23 km a.s.l. To corroborate our findings, we used in situ data, particulate matter (PM) concentrations (PM2.5) from a particulate sensor located close to our station, and the total black carbon (BC) concentrations along with the respective contribution of the fossil fuel (BCff) and biomass/wood burning (BCwb) from the Aethalometer. The PM2.5 mass concentrations ranged from 5.6 to 175.7 μg/m3, while the wood burning emissions from residential heating were increasing during the evening hours, with decreasing temperatures. The BCwb concentrations ranged from 0.5 to 17.5 μg/m3, with an extremely high mean contribution of BCwb equal to 85.4%, which in some cases during night-time reached up to 100% during the studied period.


Abstract While water lifting plays a recognized role in the global atmospheric power budget, estimates for this role in tropical cyclones vary from no effect to a major reduction in storm intensity. To better assess this impact, here we consider the work output of an infinitely narrow thermodynamic cycle with two streamlines connecting the top of the boundary layer in the vicinity of maximum wind (without assuming gradient-wind balance) to an arbitrary level in the inviscid free troposphere. The reduction of a storm’s maximum wind speed due to water lifting is found to decline with increasing efficiency of the cycle and is about 5% for maximum observed Carnot efficiencies. In the steady-state cycle, there is an extra heat input associated with the warming of precipitating water. The corresponding positive extra work is of an opposite sign and several times smaller than that due to water lifting. We also estimate the gain of kinetic energy in the outflow region. Contrary to previous assessments, this term is found to be large when the outflow radius is small (comparable to the radius of maximum wind). Using our framework, we show that Emanuel’s maximum potential intensity (E-PI) corresponds to a cycle where total work equals work performed at the top of the boundary layer (net work in the free troposphere is zero). This constrains a dependence between the outflow temperature and heat input at the point of maximum wind, but does not constrain the radial pressure gradient. We outline the implications of the established patterns for assessing real storms.


MAUSAM ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 97-108
Author(s):  
B. H. SUBBARAYA ◽  
SHAM LAL ◽  
M. NAJA

A systematic programme of monitoring surface ozone and its precursor gases CH4, CO and NOx (NO + NO2) at some selected sites in the Indian region was started under ISRO's geosphere biosphere programme in 1991. Measurements have been made at Ahmedabad an urban polluted site, Gadanki a rural relatively clean site, Gurusikhar a high altitude site representative of the free troposphere and Trivandrum a coastal (relatively clean) site influenced by marine air. The data has been used to study different features of troposphere chemistry in the tropics. Some of the results from this programme relevant to the climate change problem are presented in this paper.


2021 ◽  
Vol 7 (52) ◽  
Author(s):  
Theodore K. Koenig ◽  
Rainer Volkamer ◽  
Eric C. Apel ◽  
James F. Bresch ◽  
Carlos A. Cuevas ◽  
...  

2021 ◽  
Author(s):  
Diego Lange Vega ◽  
Andreas Behrendt ◽  
Volker Wulfmeyer

<p>Between 15 July 2020 and 19 September 2021, the Atmospheric Raman Temperature and Humidity Sounder (ARTHUS) collected data at the Lindenberg Observatory of the Deutscher Wetterdienst (DWD), including temperature and water vapor mixing ratio with a high temporal and range resolution.</p> <p>During the operation period, very stable 24/7 operation was achieved, and ARTHUS demonstrated that is capable to observe the atmospheric boundary layer and lower free troposphere during both daytime and nighttime up to the turbulence scale, with high accuracy and precision, and very short latency. During nighttime, the measurement range increases even up to the tropopause and lower stratosphere.</p> <p>ARTHUS measurements resolve the strength of the inversion layer at the planetary boundary layer top, elevated lids in the free troposphere, and turbulent fluctuations in water vapor and temperature, simultaneously (Lange et al., 2019, Wulfmeyer et al., 2015). In addition to thermodynamic variables, ARTHUS provides also independent profiles of the particle backscatter coefficient and the particle extinction coefficient from the rotational Raman signals at 355 nm with much better resolution than a conventional vibrational Raman lidar.</p> <p>At the conference, highlights of the measurements will be presented. Furthermore, the statistics of more than 150 comparisons with local radiosondes will be presented which confirm the high accuracy of the temperature and moisture measurements of ARTHUS.</p> <p><strong><em>Acknowledgements</em></strong></p> <p>The development of ARTHUS was supported by the Helmholtz Association of German Research Centers within the project Modular Observation Solutions for Earth Systems (MOSES). The measurements in Lindenberg were funded by DWD.</p> <p><strong><em>References </em></strong></p> <p>Lange, D., Behrendt, A., and Wulfmeyer, V. (2019). Compact operational tropospheric water vapor and temperature Raman lidar with turbulence resolution. <em>Geophysical Research Letters</em>, 46. https://doi.org/10.1029/2019GL085774</p> <p>Wulfmeyer, V., R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus (2015), A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles, <em>Rev. Geophys.</em>, 53,819–895, doi:10.1002/2014RG000476</p>


2021 ◽  
Author(s):  
Lisa J. Beck ◽  
Siegfried Schobesberger ◽  
Heikki Junninen ◽  
Janne Lampilahti ◽  
Antti Manninen ◽  
...  

2021 ◽  
Author(s):  
Lisa J. Beck ◽  
Siegfried Schobesberger ◽  
Heikki Junninen ◽  
Janne Lampilahti ◽  
Antti Manninen ◽  
...  

Abstract. At SMEAR II research station in Hyytiälä, located in the Finnish boreal forest, the process of new particle formation and the role of ions has been investigated for almost 20 years near the ground and at canopy level. However, above SMEAR II, the vertical distribution and diurnal variation of these different atmospheric ions are poorly characterized. In this study, we assess the atmospheric ion composition in the stable boundary layer, residual layer, mixing layer and free troposphere, and the 5 evolution of these atmospheric ions due to photochemistry and turbulent mixing through the day. To measure the vertical profile of atmospheric ions, we developed a tailored setup for online mass spectrometric measurements, capable of being deployed in a Cessna 172 with minimal modifications. Simultaneously, instruments dedicated to aerosol properties measured in a second Cessna. We conducted a total of 16 measurement flights in May 2017, during the spring, which is the most active new particle formation season. A flight day typically consisted of three distinct flights through the day (dawn, morning and afternoon) to 10 observe the diurnal variation and at different altitudes (from 100 m to 3200 m above ground), and to capture the boundary layer development from stable boundary layer, residual layer to mixing layer, and the free troposphere. Our observations showed that the ion composition is distinctly different in each layer and depends on the air mass origin and time of the day. Before sunrise, the layers are separated from each other and have their own ion chemistry. We observed that the ions present within the stable layer are of the same composition as the ions measured at the canopy level. During daytime when the mixing layer evolved and the compounds are vertically mixed, we observed that highly oxidised organic molecules are distributed to the top of the boundary layer. The ion composition in the residual layer varies with each day, showing similarities with either the stable boundary layer or the free troposphere. Finally, within the free troposphere, we detected a variety of carboxylic acids and ions that are likely containing halogens, originating from the Arctic Sea.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
S. Allen ◽  
D. Allen ◽  
F. Baladima ◽  
V. R. Phoenix ◽  
J. L. Thomas ◽  
...  

AbstractThe emerging threat of atmospheric microplastic pollution has prompted researchers to study areas previously considered beyond the reach of plastic. Investigating the range of atmospheric microplastic transport is key to understanding the global extent of this problem. While atmospheric microplastics have been discovered in the planetary boundary layer, their occurrence in the free troposphere is relatively unexplored. Confronting this is important because their presence in the free troposphere would facilitate transport over greater distances and thus the potential to reach more distal and remote parts of the planet. Here we show evidence of 0.09–0.66 microplastics particles/m3 over 4 summer months from the Pic du Midi Observatory at 2877 meters above sea level. These results exhibit true free tropospheric transport of microplastic, and high altitude microplastic particles <50 µm (aerodynamic diameter). Analysis of air/particle history modelling shows intercontinental and trans-oceanic transport of microplastics illustrating the potential for global aerosol microplastic transport.


2021 ◽  
Vol 21 (22) ◽  
pp. 16925-16953
Author(s):  
Larissa Lacher ◽  
Hans-Christian Clemen ◽  
Xiaoli Shen ◽  
Stephan Mertes ◽  
Martin Gysel-Beer ◽  
...  

Abstract. Primary ice formation in mixed-phase clouds is initiated by a minute subset of the ambient aerosol population, called ice-nucleating particles (INPs). The knowledge about their atmospheric concentration, composition, and source in cloud-relevant environments is still limited. During the 2017 joint INUIT/CLACE (Ice Nuclei research UnIT/CLoud–Aerosol Characterization Experiment) field campaign, observations of INPs as well as of aerosol physical and chemical properties were performed, complemented by source region modeling. This aimed at investigating the nature and sources of INPs. The campaign took place at the High-Altitude Research Station Jungfraujoch (JFJ), a location where mixed-phase clouds frequently occur. Due to its altitude of 3580 m a.s.l., the station is usually located in the lower free troposphere, but it can also receive air masses from terrestrial and marine sources via long-range transport. INP concentrations were quasi-continuously detected with the Horizontal Ice Nucleation Chamber (HINC) under conditions representing the formation of mixed-phase clouds at −31 ∘C. The INP measurements were performed in parallel to aerosol measurements from two single-particle mass spectrometers, the Aircraft-based Laser ABlation Aerosol MAss Spectrometer (ALABAMA) and the laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). The chemical identity of INPs is inferred by correlating the time series of ion signals measured by the mass spectrometers with the time series of INP measurements. Moreover, our results are complemented by the direct analysis of ice particle residuals (IPRs) by using an ice-selective inlet (Ice-CVI) coupled with the ALABAMA. Mineral dust particles and aged sea spray particles showed the highest correlations with the INP time series. Their role as INPs is further supported by source emission sensitivity analysis using atmospheric transport modeling, which confirmed that air masses were advected from the Sahara and marine environments during times of elevated INP concentrations and ice-active surface site densities. Indeed, the IPR analysis showed that, by number, mineral dust particles dominated the IPR composition (∼58 %), and biological and metallic particles are also found to a smaller extent (∼10 % each). Sea spray particles are also found as IPRs (17 %), and their fraction in the IPRs strongly varied according to the increased presence of small IPRs, which is likely due to an impact from secondary ice crystal formation. This study shows the capability of combining INP concentration measurements with chemical characterization of aerosol particles using single-particle mass spectrometry, source region modeling, and analysis of ice residuals in an environment directly relevant for mixed-phase cloud formation.


2021 ◽  
Author(s):  
Franz Conen ◽  
Annika Einbock ◽  
Claudia Mignani ◽  
Christoph Hüglin

Abstract. Ice nucleating particles (INP) initiate ice formation in supercooled clouds, typically starting at a few km above ground. However, little is known about the concentration and composition of INP in the lower free troposphere (FT). Here, we analysed INP active at −10 °C (INP−10) and −15 °C (INP−15) collected during FT conditions at the high-altitude observatory Jungfraujoch. We relied on continuous radon measurements to distinguish FT conditions from those influenced by the planetary boundary layer. Median concentrations in the FT were 2.4 INP−10 m−3 and 9.8 INP−15 m−3, with a multiplicative standard deviation of 2.0 and 1.6, respectively. A majority of INP was deactivated after exposure to 60 °C, thus probably originated from certain epiphytic bacteria or fungi. Subsequent heating to 95 °C deactivated another 15 % to 20 % of the initial INP, likely other types of fungal INP that might be associated with soil organic matter or with decaying leaves. Very few INP−10 withstood heating to 95 °C, but on average 20 % of INP−15 in FT samples did so. This percentage doubled during Saharan dust intrusions, which had practically no influence on INP−10. Overall, the results suggest that aerosolised epiphytic microorganisms, or parts thereof, are responsible for the majority of primary ice formation in moderately supercooled clouds above western Europe.


Sign in / Sign up

Export Citation Format

Share Document