laser sources
Recently Published Documents


TOTAL DOCUMENTS

980
(FIVE YEARS 151)

H-INDEX

42
(FIVE YEARS 5)

Photonics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 46
Author(s):  
Xiao Liu ◽  
Xin-Ting Zeng ◽  
Wen-Jian Shi ◽  
Shang-Feng Bao ◽  
Tao Yu ◽  
...  

Laser exhibition technology has been widely used in the virtual environment of exhibitions and shows, as well as in the physical conference and exhibition centers. However, the speckle issue due to the high coherence of laser sources has caused harmful impacts on image quality, which is one of the obstacles to exhibition effects. In this paper, we design a compact Nd:YAG/PPMgLN laser module at 561.5 nm and use two different types of big-core multi-mode fibers to lower the spatial coherence. According to our experiment, the speckle contrasts relating to these two types reduce to 7.9% and 4.1%, respectively. The results of this paper contribute to improving the application effects of key optical components in the exhibitions. Only in this way can we provide technical supports and service guarantee for the development of the exhibition activities, and an immersive interactive experience for the audiences.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 591
Author(s):  
Mikhael El-Khoury ◽  
Bogdan Voisiat ◽  
Tim Kunze ◽  
Andrés Fabián Lasagni

Uniform periodic microstructure formation over large areas is generally challenging in Direct Laser Interference Patterning (DLIP) due to the Gaussian laser beam intensity distribution inherent to most commercial laser sources. In this work, a diffractive fundamental beam-mode shaper (FBS) element is implemented in a four-beam DLIP optical setup to generate a square-shaped top-hat intensity distribution in the interference volume. The interference patterns produced by a standard configuration and the developed setup are measured and compared. In particular, the impact of both laser intensity distributions on process throughput as well as fill-factor is investigated by measuring the resulting microstructure height with height error over the structured surface. It is demonstrated that by utilizing top-hat-shaped interference patterns, it is possible to produce on average 44.8% deeper structures with up to 60% higher homogeneity at the same throughput. Moreover, the presented approach allows the production of microstructures with comparable height and homogeneity compared to the Gaussian intensity distribution with increased throughput of 53%.


2022 ◽  
Author(s):  
Kazuue Fujita ◽  
Shohei Hayashi ◽  
Akio Ito ◽  
Tatsuo Dougakiuchi ◽  
Masahiro Hitaka ◽  
...  

Author(s):  
M. Möbus ◽  
P. Woizeschke

AbstractDeep-penetration laser beam welding is highly dynamic and affected by many parameters. Several investigations using differently sized laser spots, spot-in-spot laser systems, and multi-focus optics show that the intensity distribution is one of the most influential parameters; however, the targeted lateral and axial intensity design remains a major challenge. Therefore, a laser processing optic has been developed that coaxially combines two separate laser sources/beams with different beam characteristics and a measuring beam for optical coherence tomography (OCT). In comparison to current commercial spot-in-spot laser systems, this setup not only makes it possible to independently vary the powers of the two laser beams but also their focal planes, thus facilitating the investigation into the influence of specific energy densities along the beam axis. First investigations show that the weld penetration depth increases with increasing intensities in deeper focal positions until the reduced intensity at the sample surface, due to the deep focal position, is no longer sufficient to form a stable keyhole, causing the penetration depth to drop sharply.


2021 ◽  
Vol 12 (1) ◽  
pp. 263
Author(s):  
Claire Besancon ◽  
Delphine Néel ◽  
Dalila Make ◽  
Joan Manel Ramírez ◽  
Giancarlo Cerulo ◽  
...  

The tremendous demand for low-cost, low-consumption and high-capacity optical transmitters in data centers challenges the current InP-photonics platform. The use of silicon (Si) photonics platform to fabricate photonic integrated circuits (PICs) is a promising approach for low-cost large-scale fabrication considering the CMOS-technology maturity and scalability. However, Si itself cannot provide an efficient emitting light source due to its indirect bandgap. Therefore, the integration of III-V semiconductors on Si wafers allows us to benefit from the III-V emitting properties combined with benefits offered by the Si photonics platform. Direct epitaxy of InP-based materials on 300 mm Si wafers is the most promising approach to reduce the costs. However, the differences between InP and Si in terms of lattice mismatch, thermal coefficients and polarity inducing defects are challenging issues to overcome. III-V/Si hetero-integration platform by wafer-bonding is the most mature integration scheme. However, no additional epitaxial regrowth steps are implemented after the bonding step. Considering the much larger epitaxial toolkit available in the conventional monolithic InP platform, where several epitaxial steps are often implemented, this represents a significant limitation. In this paper, we review an advanced integration scheme of AlGaInAs-based laser sources on Si wafers by bonding a thin InP seed on which further regrowth steps are implemented. A 3 µm-thick AlGaInAs-based MutiQuantum Wells (MQW) laser structure was grown onto on InP-SiO2/Si (InPoSi) wafer and compared to the same structure grown on InP wafer as a reference. The 400 ppm thermal strain on the structure grown on InPoSi, induced by the difference of coefficient of thermal expansion between InP and Si, was assessed at growth temperature. We also showed that this structure demonstrates laser performance similar to the ones obtained for the same structure grown on InP. Therefore, no material degradation was observed in spite of the thermal strain. Then, we developed the Selective Area Growth (SAG) technique to grow multi-wavelength laser sources from a single growth step on InPoSi. A 155 nm-wide spectral range from 1515 nm to 1670 nm was achieved. Furthermore, an AlGaInAs MQW-based laser source was successfully grown on InP-SOI wafers and efficiently coupled to Si-photonic DBR cavities. Altogether, the regrowth on InP-SOI wafers holds great promises to combine the best from the III-V monolithic platform combined with the possibilities offered by the Si photonics circuitry via efficient light-coupling.


2021 ◽  
Author(s):  
Ivan Zorin ◽  
Paul Gattinger ◽  
Alexander Ebner ◽  
Markus Brandstetter

2021 ◽  
Vol 14 (12) ◽  
pp. 7453-7474
Author(s):  
Alexandra Tsekeri ◽  
Vassilis Amiridis ◽  
Alexandros Louridas ◽  
George Georgoussis ◽  
Volker Freudenthaler ◽  
...  

Abstract. Dust orientation has been an ongoing investigation in recent years. Its potential proof will be a paradigm shift for dust remote sensing, invalidating the currently used simplifications of randomly oriented particles. Vertically resolved measurements of dust orientation can be acquired with a polarization lidar designed to target the off-diagonal elements of the backscatter matrix which are nonzero only when the particles are oriented. Building on previous studies, we constructed a lidar system emitting linearly and elliptically polarized light at 1064 nm and detecting the linear and circular polarization of the backscattered light. Its measurements provide direct flags of dust orientation, as well as more detailed information of the particle microphysics. The system also has the capability to acquire measurements at varying viewing angles. Moreover, in order to achieve good signal-to-noise ratio in short measurement times, the system is equipped with two laser sources emitting in an interleaved fashion and two telescopes for detecting the backscattered light from both lasers. Herein we provide a description of the optical and mechanical parts of this new lidar system, the scientific and technical objectives of its design, and the calibration methodologies tailored for the measurements of oriented dust particles. We also provide the first, preliminary measurements of the system during a dust-free day. The work presented does not include the detection of oriented dust (or other oriented particles), and therefore the instrument has not been tested fully in this objective.


2021 ◽  
Vol 2067 (1) ◽  
pp. 012013
Author(s):  
D B Kolker ◽  
I V Sherstov ◽  
A A Boyko ◽  
B N Nyushkov ◽  
E Y Erushin ◽  
...  

Abstract We demonstrate advanced experimental approaches to photoacoustic gas detection with tunable mid-infrared (mid-IR) laser sources of different types. A gas analyzer for registration of various gas components based on a tunable narrow-linewidth optical parametric oscillator (OPO) was designed and investigated. Using this OPO, the possibility of measuring the trace concentration (∼2÷3 ppm) of methane (CH4) in air was experimentally shown. The gas detection capability was enhanced by introducing injection seeding into the OPO. Another gas analyzer was based on a quantum cascade laser (tunable within the range ∼7.6 ÷7.7 μm) and a resonant differential photoacoustic detector. Detection of the ultra-low concentration (∼0.3 ppm) of methane in air was achieved (the standard dispersion was (1σ) ≍ (10–11) ppb with an integration time of 10 s). We compare the presented approaches and outline their further development.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012001
Author(s):  
Timur Abbasov ◽  
Ivan Kazakov ◽  
Ivan Sherstov ◽  
Sergey Kontorov ◽  
Arkadi Shipulin ◽  
...  

Abstract We present a photonic integrated circuit design with multiple focusing grating couplers that can be used in a surface ion trap. This system allows transferring laser radiation from different laser sources to the ion trapped 240 μm above the surface for further manipulations.


2021 ◽  
Vol 2091 (1) ◽  
pp. 012014
Author(s):  
K V Pozhar ◽  
M O Mikhailov ◽  
E A Polyakova ◽  
E L Litinskaia

Abstract The paper considers the method of diffuse reflectance spectroscopy for noninvasive glucose level measuring in biological tissues. It is proposed a portable implementation of the system, based on a laser diode with a wavelength of 1600 nm and a power of 30 mW, operating in a pulsed mode, as well as a set of NIR-photodiodes located around the laser. The measuring system has been tested on model solutions with diffuse reflectance from polystyrene and pigskin. In the course of measurements on fixed system, an error of ~17 mg/dl is observed, which can be reduced by improving miniature laser sources.


Sign in / Sign up

Export Citation Format

Share Document