glycosidic bonds
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 105)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Weiyang Wang ◽  
Yibing Wang ◽  
Haoting Yi ◽  
Yang Liu ◽  
Guojing Zhang ◽  
...  

Rhamnogalacturonan lyase (RGL) cleaves backbone α-1,4 glycosidic bonds between L-rhamnose and D-galacturonic acid residues in type I rhamnogalacturonan (RG-I) by β-elimination to generate RG oligosaccharides with various degrees of polymerization. Here, we cloned, expressed, purified and biochemically characterized two RGLs (Bo3128 and Bo4416) in the PL11 family from Bacteroides ovatus ATCC 8483. Bo3128 and Bo4416 displayed maximal activity at pH 9.5 and pH 6.5, respectively. Whereas the activity of Bo3128 could be increased 1.5 fold in the presence of 5 mM Ca2+, Bo4416 required divalent metal ions to show any enzymatic activity. Both of RGLs showed a substrate preference for RG-I compared to other pectin domains. Bo4416 and Bo3128 primarily yielded unsaturated RG oligosaccharides, with Bo3128 also producing them with short side chains, with yields of 32.4 and 62.4%, respectively. Characterization of both RGLs contribute to the preparation of rhamnogalacturonan oligosaccharides, as well as for the analysis of the fine structure of RG-I pectins.


2022 ◽  
Author(s):  
Ke Xiao ◽  
Yongxin Hu ◽  
Yongyong Wan ◽  
XinXin Li ◽  
Qin Nie ◽  
...  

Herein, we report a new glycosylation system for the highly efficient and stereoselective formation of glycosidic bonds using glycosyl N-phenyl trifluoroacetimidate (PTFAI) donors and a charged thiourea hydrogen-bond-donor catalyst. The...


2021 ◽  
Vol 1 (1) ◽  
pp. 661-668
Author(s):  
Mahreni Mahreni ◽  
Yuli Ristianingsih ◽  
Asep Saefudin ◽  
Affifuroyan Aflah Akmal ◽  
Annisa Hindun Narullita

Plastic waste has become a global problem because it causes environmental pollution. This is because plastic waste is difficult to decompose. There have been numerous solutions proposed, one of which is theuse of bioplastics. In this research, the bioplastics were made from third- generation biomass, namely the eucheuma cottoni. Eucheuma cottoni is contains biopolymer carrageenan, a carbohydrate with unit structures consisting of d-galactose and 3,6 anhydrogalactose with glycosidic bonds. Goal this research is study the effects of sorbitol plasticizer content and bioplastics manufacturing temperature on bioplastics, tensile strength, elongation, and biodegradation rate. The bioplastics were made by extracting 10 grams of eucheuma cottoni powder in 200 ml of distilled water. The algae extract was added with sorbitol (plasticizer) and heated at various temperatures from 45°C until 60°C. The mixture was poured into a mold tin and dried in the oven to a constant weight. The resulting bioplastics were then characterized to determine the tensile strength and biodegradation rate. The results showed that increasing the plasticizer content from 3.5% reduced the tensile strength, however, it increased the elongation and biodegradation rate. The optimal plasticizer content was 4% with a tensile strength value of 4.8309 Mpa, elongation of 24.1548%, and biodegradation rate of 26.9392%. The temperature variable showed that increasing the temperature of making bioplastics could reduce tensile strength, increase elongation and biodegradation rate of bioplastics. The optimum temperature for making bioplastics at 45oC obtained a tensile strength of6.28 Mpa and an elongation of 20.67%. The biodegradation rate was 39.6665%, and the best sorbitol content was received at 4%.


2021 ◽  
Vol 17 (5) ◽  
pp. 123-133
Author(s):  
I. A. Fomenko ◽  
S. N. Tuchkova

Accumulation of plant waste is a serious environmental problem. Mushrooms with high cellulolytic activity can process it into valuable products that will be useful in solving various industries and agriculture problems. The enzymes of the cellulolytic complex include 1,4-β-D-glucan-4-glucanohydrolase, exo-1,4-β-glucosidase, cellobiohydrolase, β-glucosidase. 1,4-β-D-glucan-4-glucanohydrolases destroy β-1,4-glycosidic bonds within the chain of cellulose and lichenin polysaccharides. Exoglucanases destroy β-1,3- and β-1,4-glycosidic bonds at the end of the molecule. Cellobiohydrolases cleave β-1,4-glycosidic bonds to form cellobiose and glucose. β-glucosidase complete the process of destruction. Fungi with high cellulolytic activity include both representatives of the Ascomycota and Basidiomycota divisions. Ascomycete Chaetomium globosum produces endoglucanases of two families and 8 cellobiohydrolases. Myceliophthora thermophila also produces endoglucanases and cellobiohydrolases, the most abundant of which is Mt Cel7A. The fungus is a promising producer of thermostable enzymes. Trichoderma reesei has a long history of safe use as a source of highly active cellulolytic enzymes and other valuable metabolites. LPMOs of the cellulolytic fungus Thielavia terrestris are considered auxiliary enzymes, but can negatively affect the main enzymes of the complex. Irpex lacteus also produces LPMO and a complete cellulolytic enzyme complex. The cellulolytic activity of fungi and their ability to grow on cheap substrates can be used to bioconvert plant waste into valuable products. One of the ways to utilize them is to convert into compound feed with a high protein content through the use of starter cultures. The use of mushrooms will increase the content of protein and simple carbohydrates, enrich the feed with fats. Another method is to obtain cellulases, which are widely used in many industries. Thanks to the production of biodiesel and bioethanol from cellulose-containing raw materials it is possible to solve the problem of lack of fuel by replacing energy carriers from non-renewable energy sources with their environmentally friendly counterparts. They are less toxic than diesel and gasoline and are also made from renewable resources.


2021 ◽  
Vol 22 (24) ◽  
pp. 13596
Author(s):  
Mahendra Rai ◽  
Magdalena Wypij ◽  
Avinash P. Ingle ◽  
Joanna Trzcińska-Wencel ◽  
Patrycja Golińska

Global reports on multidrug resistance (MDR) and life-threatening pathogens such as SARS-CoV-2 and Candida cruris have stimulated researchers to explore new antimicrobials that are eco-friendly and economically viable. In this context, biodegradable polymers such as nisin, chitin, and pullulan play an important role in solving the problem. Pullulan is an important edible, biocompatible, water-soluble polymer secreted by Aureobasidium pullulans that occurs ubiquitously. It consists of maltotriose units linked with α-1,6 glycosidic bonds and is classed as Generally Regarded as Safe (GRAS) by the Food and Drug Administration (FDA) in the USA. Pullulan is known for its antibacterial, antifungal, antiviral, and antitumor activities when incorporated with other additives such as antibiotics, drugs, nanoparticles, and so on. Considering the importance of its antimicrobial activities, this polymer can be used as a potential antimicrobial agent against various pathogenic microorganisms including the multidrug-resistant (MDR) pathogens. Moreover, pullulan has ability to synthesize biogenic silver nanoparticles (AgNPs), which are remarkably efficacious against pathogenic microbes. The pullulan-based nanocomposites can be applied for wound healing, food packaging, and also enhancing the shelf-life of fruits and vegetables. In this review, we have discussed biosynthesis of pullulan and its role as antibacterial, antiviral, and antifungal agent. Pullulan-based films impregnated with different antimicrobials such as AgNPs, chitosan, essential oils, and so on, forming nanocomposites have also been discussed as natural alternatives to combat the problems posed by pathogens.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1394
Author(s):  
Nimesh Shukla ◽  
Brianna Bembenek ◽  
Erika A. Taylor ◽  
Christina M. Othon

Compatible osmolytes are a broad class of small organic molecules employed by living systems to combat environmental stress by enhancing the native protein structure. The molecular features that make for a superior biopreservation remain elusive. Through the use of time-resolved and steady-state spectroscopic techniques, in combination with molecular simulation, insight into what makes one molecule a more effective compatible osmolyte can be gained. Disaccharides differing only in their glycosidic bonds can exhibit different degrees of stabilization against thermal denaturation. The degree to which each sugar is preferentially excluded may explain these differences. The present work examines the biopreservation and hydration of trehalose, maltose, and gentiobiose.


2021 ◽  
Author(s):  
Joshua Martin ◽  
Girish Sati ◽  
Tanmay Malakar ◽  
Jessica Hatt ◽  
Paul Zimmerman ◽  
...  

While developing boron-catalyzed glycosylations using glycosyl fluoride donors and trialkylsilyl ether acceptors, competing pathways involving productive glycosylation or glycosyl exchange were observed. Experimental and computational mechanistic studies suggest a novel mode of reactivity where a dioxolenium ion is a key intermediate that promotes both pathways through addition to either a silyl ether or to the acetal of an existing glycosidic linkage. Modifications in catalyst structure enable either pathway to be favored, and with this understanding, improved multicomponent iterative couplings and glycosyl exchange processes were demonstrated.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4224
Author(s):  
Daisuke Ando ◽  
Kenji Umemura

In sucrose/citric acid based wood adhesive, the detailed bonding mechanism has still been unknown. Here, we investigated the detailed chemical structures of this adhesive wood (Japanese cedar)-based molding by using heteronuclear single quantum coherence–nuclear magnetic resonance (HSQC-NMR). NMR peaks associated with the furan-type structure appeared, suggesting that the furan compound was formed from sucrose and converted to a furan polymer during the adhesive process and that some of the furan structures in the polymers were ester-bonded with citric acid. The secondary forces between the furan polymers and wood components were thought to contribute to the adhesive effect. In our analysis of the interphase structure, primary hydroxyl groups of both polysaccharides and of lignin substructures were found to be esterified with citric acid. Additionally, some of the glycosidic bonds in polysaccharides were cleaved during the acidic condition produced by citric acid. The above results provided evidence of the polymerization of sucrose-derived 5-HMF, the esterification of wood components, and the degradation of polysaccharides during the molding process. Citric acid functioned as a clamp between the obtained furan polymer and the wood components. The sucrose/citric acid based wood adhesive can be defined as a hybrid-type wood adhesive, involving both secondary forces and chemical bonding interactions.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Dawei Wu ◽  
Yanrong Zhang ◽  
Dawei Wang ◽  
Tingting Liu ◽  
Shanshan Zhang ◽  
...  

In this study, hot water was used to extract Inonotus obliquus oligosaccharide. DEAE-cellulose and Sepharose G-200 were used to purify Inonotus obliquus oligosaccharide. Inonotus obliquus oligosaccharide IOP-2A was obtained. Its molecular weight Mw is about 1000 Da. The monosaccharide composition and molar ratio were glucose : xylose : galactose : mannose = 54.1 : 13.6 : 13.2 : 6.7. In addition, it also contains a small amount of galactose, gluconic acid, rhamnose, and fucose. IOP-2A contained mainly β-glycosidic bonds. Among them, 1,4-glycosidic bonds accounted for 9.2%, and 1,6-glycosidic bonds accounted for 85.1%. Oligosaccharide macromolecules formed a layered structure. Mouse experiments showed that IOP-2A had the function of preventing hyperlipidemia. At the same time, IOP-2A had a certain protective effect on the liver and kidney. The mechanism of IOP-2A in preventing hyperlipidemia was obtained from the perspective of mouse intestinal flora.


2021 ◽  
Vol 117 (11/12) ◽  
Author(s):  
Louisa C. Sarkodie ◽  
Philomena Entsie ◽  
Mariam E. Boakye-Gyasi ◽  
Frederick W.A. Owusu ◽  
Marcel T. Bayor ◽  
...  

Excipients are the various ingredients, apart from the active pharmaceutical ingredients, which are added to pharmaceutical formulations. Excipients obtained from natural sources are preferred over those from synthetic sources because they are cheap, biocompatible and readily available. Gums are made up of carbohydrate units which are linked by glycosidic bonds. This study was aimed at evaluating the potential binding and disintegrating properties of gum obtained from the bark of Cinnamomum zeylanicum, which was obtained from Effiduase in the Ashanti region of Ghana. The gum was extracted using 96% ethanol and the moisture content, Fourier transform infrared spectroscopy spectra, water holding capacity, swelling index and flow properties of the gum were determined. The gum was used to formulate tablets at different concentrations (10% w/v, 15% w/v and 20% w/v) as binder with acacia as the standard. The gum was also used to formulate tablets at different concentrations (5% w/v, 7.5% w/v and 10% w/v) as disintegrant with starch as the standard. Quality control tests were then conducted on all formulated tablets. The gum exhibited good flow and physicochemical properties. All formulated tablets passed the uniformity of weight test, friability test, disintegration test, hardness test, uniformity of dimensions test and drug content. All batches of tablets, except Batch 7, passed the dissolution test. Based on the study carried out, C. zeylanicum gum can be used as an alternative excipient to acacia and starch as a binder and a disintegrant, respectively.


Sign in / Sign up

Export Citation Format

Share Document