interface model
Recently Published Documents


TOTAL DOCUMENTS

814
(FIVE YEARS 186)

H-INDEX

44
(FIVE YEARS 7)

2022 ◽  
Vol 391 ◽  
pp. 114440
Author(s):  
Lukas Munk ◽  
Silvia Reschka ◽  
Stefan Löhnert ◽  
Hans Jürgen Maier ◽  
Peter Wriggers

2022 ◽  
Vol 260 ◽  
pp. 106721
Author(s):  
Yu Nie ◽  
Abdul Sheikh ◽  
Michael Griffith ◽  
Phillip Visintin
Keyword(s):  

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 533
Author(s):  
Huishu Liu ◽  
Jimiao Duan ◽  
Kecheng Gu ◽  
Jiang Li ◽  
Hao Yan ◽  
...  

Gas–liquid flow in a pipeline is a very common. Slug two-phase flow is dominated in the case of slightly upward flow (+0.25°) and considered to be the comprehensive flow configuration, and can be in close contact with all the other flow patterns. The models of different flow patterns can be unified. Precise prediction of the slug flow is crucial for proper design and operation. In this paper, we develop hydrodynamics unified modeling for gas–liquid two-phase slug flow, and the bubble and droplet entrainment is optimized. For the important parameters (wall and interfacial friction factors, slug translational velocity and average slug length), the correlations of these parameters are optimized. Furthermore, the related parameters for liquid droplet and gas bubble entrainment are given. Accounting for the gas–liquid interface shape, hydrodynamics models, i.e., the flat interface model (FIM) and the double interface model (DIM), of liquid film in the slug body are applied and compared with the experimental data. The calculated results show that the predictions for the liquid holdup and pressure gradient of the DIM agree with experimental data better than those of the FIM. A comparison between the available experimental results and Zhang’s model calculations shows that the DIM model correctly describes the slug dynamics in gas–liquid pipe flow.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 66
Author(s):  
Miao Wang ◽  
Gang Liu ◽  
Min Huang ◽  
Yabo Fu ◽  
Changhong Lin ◽  
...  

Obtaining detailed information regarding the interfacial characteristics of metal/hexagonal-TMN composites is imperative for developing these materials with optimal mechanical properties. To this end, we systematically investigate the work of adhesion, fracture toughness, and interfacial stability of M/Cr2N and M/V2N interfaces using first-principles calculations. The orientation (0001) of hexagonal phases and (111) of fcc phases are selected as the interface orientations. Accordingly, we construct M/Cr2N interface models by considering 1N, 2N, and Cr terminations of Cr2N(0001), as well as two stacking sequences (top and hollow sites) for the 1N- and 2N-terminated interface models, respectively. The M/V2N interface models are constructed in the same way. The V-terminated Ni/V2N interface is demonstrated to provide a good combination of the work of adhesion, fracture toughness, and interfacial stability. Therefore, the Ni/V2N interface model can be regarded as the preferred configuration among the metal/hexagonal-TMN interface models considered. The present results offer a practical perspective for tailoring the interfaces in metal/hexagonal-TMN composite materials to obtain improved mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document