oxidative dearomatization
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 53)

H-INDEX

30
(FIVE YEARS 6)

2022 ◽  
Vol 23 (2) ◽  
pp. 909
Author(s):  
Derek R. Boyd ◽  
Narain D. Sharma ◽  
Paul J. Stevenson ◽  
Patrick Hoering ◽  
Christopher C. R. Allen ◽  
...  

Enzymatic oxidations of thiophenes, including thiophene-containing drugs, are important for biodesulfurization of crude oil and drug metabolism of mono- and poly-cyclic thiophenes. Thiophene oxidative dearomatization pathways involve reactive metabolites, whose detection is important in the pharmaceutical industry, and are catalyzed by monooxygenase (sulfoxidation, epoxidation) and dioxygenase (sulfoxidation, dihydroxylation) enzymes. Sulfoxide and epoxide metabolites of thiophene substrates are often unstable, and, while cis-dihydrodiol metabolites are more stable, significant challenges are presented by both types of metabolite. Prediction of the structure, relative and absolute configuration, and enantiopurity of chiral metabolites obtained from thiophene enzymatic oxidation depends on the substrate, type of oxygenase selected, and molecular docking results. The racemization and dimerization of sulfoxides, cis/trans epimerization of dihydrodiol metabolites, and aromatization of epoxides are all factors associated with the mono- and di-oxygenase-catalyzed metabolism of thiophenes and thiophene-containing drugs and their applications in chemoenzymatic synthesis and medicine.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 991
Author(s):  
Diego Caprioglio ◽  
Daiana Mattoteia ◽  
Orazio Taglialatela-Scafati ◽  
Eduardo Muñoz ◽  
Giovanni Appendino

Neutral cannabinoids are oxidatively unstable and are converted into quinone derivatives by atmospheric- and/or chemical oxidative dearomatization. The study of cannabinoquinones has long been plagued by their lability toward additional oxidative degradation, but full substitution of the quinone ring, as well as the introduction of steric hindrance on the alkyl substituent, have provided sufficient stability for a systematic investigation of their bioactivity and for further clinical development. These studies culminated in the discovery of the aminocannabinoquinone VCE-004.8 (5), a compound under phase 2 clinical development with orphan drug status by EMA and FDA for the management of scleroderma. The synthesis and rich chemistry of these compounds will be described, summarizing their biological profile and clinical potential.


2021 ◽  
Author(s):  
Ayham Abazid ◽  
Boris Nachtsheim

A catalytic highly enantioselective synthesis of spirooxazolines is presented. Starting from readily available 2-naphthol-substituted benzamides and using catalytic amounts of a chiral triazole-substituted iodoarene catalyst, a variety of spirooxazolines can be isolated through an enantioselective oxidative dearomatization in up to 92% yield and 97% ee. The further synthetic utility of the optically enriched spirooxazolines was examined providing a corresponding 2-naphthalenole and an oxepin.<br>


2021 ◽  
Author(s):  
Ayham Abazid ◽  
Boris Nachtsheim

A catalytic highly enantioselective synthesis of spirooxazolines is presented. Starting from readily available 2-naphthol-substituted benzamides and using catalytic amounts of a chiral triazole-substituted iodoarene catalyst, a variety of spirooxazolines can be isolated through an enantioselective oxidative dearomatization in up to 92% yield and 97% ee. The further synthetic utility of the optically enriched spirooxazolines was examined providing a corresponding 2-naphthalenole and an oxepin.<br>


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2637
Author(s):  
Roman O. Shcherbakov ◽  
Diana A. Eshmemet’eva ◽  
Anton A. Merkushev ◽  
Igor V. Trushkov ◽  
Maxim G. Uchuskin

The approach to 3-(furan-2-yl)-1,3-di(het)arylprop-2-en-1-ones based on the oxidative dearomatization of 3-(furan-2-yl)-1,3-di(het)arylpropan-1-ones followed by an unusual cyclization of the formed di(het)aryl-substituted 2-ene-1,4,7-triones has been developed. The cyclization step is related to the Paal–Knorr synthesis, but the furan ring formation is accompanied in this case by a formal shift of the double bond through the formation of a fully conjugated 4,7-hydroxy-2,4,6-trien-1-one system or its surrogate.


Synlett ◽  
2021 ◽  
Author(s):  
Sarah E. Wengryniuk ◽  
Xiao Xiao

Abstract ortho-Quinones are valuable molecular frameworks with diverse applications across biology, materials, organic synthesis, catalysis, and coordination chemistry. Despite their broad utility, their synthesis remains challenging, in particular via the direct oxidation of readily accessible phenols, due to the need to affect regioselective ortho oxidation coupled with the sensitivity of the resulting o-quinone products. The perspective looks at the emergence of I(V) hypervalent iodine reagents as an effective class of oxidants for regioselective o-quinone synthesis. The application of these reagents in regioselective phenol oxidation to both o-quinones and o-quinols will be discussed, including a recent report from our laboratory on the first method for the oxidation of electron-deficient phenols using a novel nitrogen-ligated I(V) reagent. Also included are select examples of total syntheses utilizing this methodology as well as recent advancements in chiral I(V) reagent design for asymmetric phenol dearomatization.1 Introduction2 I(V): Hypervalent Iodine Reagents3 I(V)-Mediated Dearomatization to o-Quinones4 Bisnitrogen-Ligated I(V) Reagents: ortho Dearomatization of Electron-Poor Phenols5 I(V)-Mediated Dearomatization to o-Quinols6 Conclusion and Outlook


Sign in / Sign up

Export Citation Format

Share Document