eeg analysis
Recently Published Documents


TOTAL DOCUMENTS

945
(FIVE YEARS 178)

H-INDEX

54
(FIVE YEARS 6)

2022 ◽  
Vol 13 ◽  
Author(s):  
Chiara F. Tagliabue ◽  
Greta Varesio ◽  
Veronica Mazza

Electroencephalography (EEG) studies investigating visuo-spatial working memory (vWM) in aging typically adopt an event-related potential (ERP) analysis approach that has shed light on the age-related changes during item retention and retrieval. However, this approach does not fully enable a detailed description of the time course of the neural dynamics related to aging. The most frequent age-related changes in brain activity have been described by two influential models of neurocognitive aging, the Hemispheric Asymmetry Reduction in Older Adults (HAROLD) and the Posterior-Anterior Shift in Aging (PASA). These models posit that older adults tend to recruit additional brain areas (bilateral as predicted by HAROLD and anterior as predicted by PASA) when performing several cognitive tasks. We tested younger (N = 36) and older adults (N = 35) in a typical vWM task (delayed match-to-sample) where participants have to retain items and then compare them to a sample. Through a data-driven whole scalp EEG analysis we aimed at characterizing the temporal dynamics of the age-related activations predicted by the two models, both across and within different stages of stimulus processing. Behaviorally, younger outperformed older adults. The EEG analysis showed that older adults engaged supplementary bilateral posterior and frontal sites when processing different levels of memory load, in line with both HAROLD and PASA-like activations. Interestingly, these age-related supplementary activations dynamically developed over time. Indeed, they varied across different stages of stimulus processing, with HAROLD-like modulations being mainly present during item retention, and PASA-like activity during both retention and retrieval. Overall, the present results suggest that age-related neural changes are not a phenomenon indiscriminately present throughout all levels of cognitive processing.


2022 ◽  
Vol 12 ◽  
Author(s):  
Michael Müller ◽  
Martijn Dekkers ◽  
Roland Wiest ◽  
Kaspar Schindler ◽  
Christian Rummel

Epilepsy surgery can be a very effective therapy in medication refractory patients. During patient evaluation intracranial EEG is analyzed by clinical experts to identify the brain tissue generating epileptiform events. Quantitative EEG analysis increasingly complements this approach in research settings, but not yet in clinical routine. We investigate the correspondence between epileptiform events and a specific quantitative EEG marker. We analyzed 99 preictal epochs of multichannel intracranial EEG of 40 patients with mixed etiologies. Time and channel of occurrence of epileptiform events (spikes, slow waves, sharp waves, fast oscillations) were annotated by a human expert and non-linear excess interrelations were calculated as a quantitative EEG marker. We assessed whether the visually identified preictal events predicted channels that belonged to the seizure onset zone, that were later resected or that showed strong non-linear interrelations. We also investigated whether the seizure onset zone or the resection were predicted by channels with strong non-linear interrelations. In patients with temporal lobe epilepsy (32 of 40), epileptic spikes and the seizure onset zone predicted the resected brain tissue much better in patients with favorable seizure control after surgery than in unfavorable outcomes. Beyond that, our analysis did not reveal any significant associations with epileptiform EEG events. Specifically, none of the epileptiform event types did predict non-linear interrelations. In contrast, channels with strong non-linear excess EEG interrelations predicted the resected channels better in patients with temporal lobe epilepsy and favorable outcome. Also in the small number of patients with seizure onset in the frontal and parietal lobes, no association between epileptiform events and channels with strong non-linear excess EEG interrelations was detectable. In contrast to patients with temporal seizure onset, EEG channels with strong non-linear excess interrelations did neither predict the seizure onset zone nor the resection of these patients or allow separation between patients with favorable and unfavorable seizure control. Our study indicates that non-linear excess EEG interrelations are not strictly associated with epileptiform events, which are one key concept of current clinical EEG assessment. Rather, they may provide information relevant for surgery planning in temporal lobe epilepsy. Our study suggests to incorporate quantitative EEG analysis in the workup of clinical cases. We make the EEG epochs and expert annotations publicly available in anonymized form to foster similar analyses for other quantitative EEG methods.


2022 ◽  
Vol 33 (1) ◽  
pp. 331-347
Author(s):  
S. Beatrice ◽  
Janaki Meena
Keyword(s):  

2022 ◽  
pp. 108123
Author(s):  
Tengfei Gao ◽  
Dan Chen ◽  
Yunbo Tang ◽  
Bo Du ◽  
Rajiv Ranjan ◽  
...  

2022 ◽  
pp. 29-50
Author(s):  
Varsha K. Harpale ◽  
Vinayak K. Bairagi
Keyword(s):  

2021 ◽  
Vol 20 (4) ◽  
pp. 791-811
Author(s):  
Davide Borra ◽  
Elisa Magosso
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jun Zhang ◽  
Wenhan Dai

The outdoor light environment significantly affects aspects of public psychological and physiological health. This study conducted experiments to quantify the effects of the light environment on visitor light comfort in urban park pedestrian space. Nine sets of lighting conditions with different average horizontal illuminance (2 lx, 6 lx, 10 lx) and colour temperatures (5600 K, 4300 K, 3000 K) were established virtual reality scenarios. Subjective light comfort was evaluated, and electroencephalogram (EEG) was measured on 18 subjects to comprehensively study the effects of different light environments on human light comfort. The results of the comprehensive evaluation showed that colour temperature had a very significant impact on subjective light comfort, with warm light being generally more favourable than cool light in enhancing human subjective light comfort. The results of the EEG analysis show that the average horizontal illuminance is an important factor in the level of physiological fatigue, and that physiological fatigue can be maintained in a superior state at an appropriate level of illuminance. Based on the results of both subjective and objective factors, a comprehensive analysis was carried out to propose a range of average horizontal illuminance (4.08 lx, 6.99 lx) and a range of colour temperature (3126 K, 4498 K) for the comprehensive light comfort zone in urban park pedestrian space.


2021 ◽  
pp. 155005942110640
Author(s):  
Fatih Hilmi Çetin ◽  
Miraç Barış Usta ◽  
Serap Aydın ◽  
Ahmet Sami Güven

Objective: Complexity analysis is a method employed to understand the activity of the brain. The effect of methylphenidate (MPH) treatment on neuro-cortical complexity changes is still unknown. This study aimed to reveal how MPH treatment affects the brain complexity of children with attention deficit hyperactivity disorder (ADHD) using entropy-based quantitative EEG analysis. Three embedding entropy approaches were applied to short segments of both pre- and post- medication EEG series. EEG signals were recorded for 25 boys with combined type ADHD prior to the administration of MPH and at the end of the first month of the treatment. Results: In comparison to Approximate Entropy (ApEn) and Sample Entropy (SampEn), Permutation Entropy (PermEn) provided the most sensitive estimations in investigating the impact of MPH treatment. In detail, the considerable decrease in EEG complexity levels were observed at six cortical regions (F3, F4, P4, T3, T6, O2) with statistically significant level ( p < .05). As well, PermEn provided the most meaningful associations at central lobes as follows: 1) The largeness of EEG complexity levels was moderately related to the severity of ADHD symptom detected at pre-treatment stage. 2) The percentage change in the severity of opposition as the symptom cluster was moderately reduced by the change in entropy. Conclusion: A significant decrease in entropy levels in the frontal region was detected in boys with combined type ADHD undergoing MPH treatment at resting-state mode. The changes in entropy correlated with pre-treatment general symptom severity of ADHD and conduct disorder symptom cluster severity.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jing Xue

In order to improve the classification accuracy and reliability of emotional state assessment and provide support and help for music therapy, this paper proposes an EEG analysis method based on wavelet transform under the stimulation of music perception. Using the data from the multichannel standard emotion database (DEAP), α, ß, and θ rhythms are extracted in frontal (F3 and F4), temporal (T7 and T8), and central (C3 and C4) channels with wavelet transform. EMD is performed on the extracted EEG rhythm to obtain intrinsic mode function (IMF) components, and then, the average energy and amplitude difference eigenvalues of IMF components of EEG rhythm waves are further extracted, that is, each rhythm wave contains three average energy characteristics and two amplitude difference eigenvalues so as to fully extract EEG feature information. Finally, emotional state evaluation is realized based on a support vector machine classifier. The results show that the correct rate between no emotion, positive emotion, and negative emotion can reach more than 90%. Among the pairwise classification problems among the four emotions selected, the classification accuracy obtained by this EEG feature extraction method is higher than that obtained by general feature extraction methods, which can reach about 70%. Changes in EEG α wave power were closely correlated with the polarity and intensity of emotion; α wave power varied significantly between “happiness and fear,” “pleasure and fear,” and “fear and sadness.” It has a good application prospect in both psychological and physiological research of emotional perception and practical application.


Sign in / Sign up

Export Citation Format

Share Document