integrin signaling
Recently Published Documents


TOTAL DOCUMENTS

643
(FIVE YEARS 87)

H-INDEX

82
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Jingnan Liu ◽  
Yuanbing Zhang ◽  
Youfang Zhou ◽  
Qiao-Qi Wang ◽  
Kang Ding ◽  
...  

ABSTRACTTissue architecture determines its unique physiology and function. How these properties are intertwined has remained unclear. Here, we show that the metabolic enzyme CTP synthase (CTPS) form filamentous structures termed cytoophidia along the adipocyte cortex in Drosophila adipose tissue. Interestingly, loss of cytoophidia, whether due to reduced CTPS expression or a point mutation that specifically abrogates its polymerization ability, leads to downregulated Collagen-Integrin signaling, weakened adipocyte adhesion, and defective adipose architecture. Strikingly, CTPS specifically binds with Integrin subunit α2, which influences Integrin function and Collagen IV deposition. cytoophidia promote Collagen IV mRNA expression and thus its extracellular deposition to strengthen adipocyte adhesion. Remarkably, Collagen IV-Integrin signaling reciprocally regulates cytoophidium formation at a post-translational level. Together, we demonstrate that a positive feedback signaling loop containing both cytoophidia and Integrin adhesion complex couples tissue architecture and metabolism in the fly adipose.


Author(s):  
Shen Li ◽  
Song Jiang ◽  
Qingyan Zhang ◽  
Bo Jin ◽  
Daoyuan Lv ◽  
...  

Tubular cell senescence is a common biologic process and contributes to the progression of chronic kidney disease (CKD); however, the molecular mechanisms regulating tubular cell senescence are poorly understood. Here, we report that integrin β3 (ITGB3) expression was increased in tubular cells and positively correlated with fibrosis degree in CKD patients. ITGB3 overexpression could induce p53 pathway activation and the secretion of TGF-β, which, in turn, resulted in senescent and profibrotic phenotype change in cultured tubular cells. Moreover, according to the CMAP database, we identified isoliquiritigenin (ISL) as an agent to inhibit ITGB3. ISL treatment could suppress Itgb3 expression, attenuate cellular senescence, and prevent renal fibrosis in mice. These results reveal a crucial role for integrin signaling in cellular senescence, potentially identifying a new therapeutic direction for kidney fibrosis.


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1636
Author(s):  
Hongchan Lee ◽  
Na Young Lee ◽  
Youni Kim ◽  
Hong-Seok Choi ◽  
Tayaba Ismail ◽  
...  

Glutathione peroxidase 1 (Gpx1) and peroxiredoxin 2 (Prdx2) belong to the thiol peroxidase family of antioxidants, and have been studied for their antioxidant functions and roles in cancers. However, the physiological significance of Gpx1 and Prdx2 during vertebrate embryogenesis are lacking. Currently, we investigated the functional roles of Gpx1 and Prdx2 during vertebrate embryogenesis using Xenopus laevis as a vertebrate model. Our investigations revealed the zygotic nature of gpx1 having its localization in the eye region of developing embryos, whereas prdx2 exhibited a maternal nature and were localized in embryonic ventral blood islands. Furthermore, the gpx1-morphants exhibited malformed eyes with incompletely detached lenses. However, the depletion of prdx2 has not established its involvement with embryogenesis. A molecular analysis of gpx1-depleted embryos revealed the perturbed expression of a cryba1-lens-specific marker and also exhibited reactive oxygen species (ROS) accumulation in the eye regions of gpx1-morphants. Additionally, transcriptomics analysis of gpx1-knockout embryos demonstrated the involvement of Wnt, cadherin, and integrin signaling pathways in the development of malformed eyes. Conclusively, our findings indicate the association of gpx1 with a complex network of embryonic developmental pathways and ROS responses, but detailed investigation is a prerequisite in order to pinpoint the mechanistic details of these interactions.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6231
Author(s):  
Joana Fort ◽  
Adrià Nicolàs-Aragó ◽  
Manuel Palacín

It is known that 4F2hc and rBAT are the heavy subunits of the heteromeric amino acid transporters (HATs). These heavy subunits are N-glycosylated proteins, with an N-terminal domain, one transmembrane domain and a bulky extracellular domain (ectodomain) that belongs to the α-amylase family. The heavy subunits are covalently linked to a light subunit from the SLC7 family, which is responsible for the amino acid transport activity, forming a heterodimer. The functions of 4F2hc and rBAT are related mainly to the stability and trafficking of the HATs in the plasma membrane of vertebrates, where they exert the transport activity. Moreover, 4F2hc is a modulator of integrin signaling, has a role in cell fusion and it is overexpressed in some types of cancers. On the other hand, some mutations in rBAT are found to cause the malfunctioning of the b0,+ transport system, leading to cystinuria. The ectodomains of 4F2hc and rBAT share both sequence and structure homology with α-amylase family members. Very recently, cryo-EM has revealed the structure of several HATs, including the ectodomains of rBAT and 4F2hc. Here, we analyze available data on the ectodomains of rBAT and 4Fhc and their relationship with the α-amylase family. The physiological relevance of this relationship remains largely unknown.


2021 ◽  
pp. 127573
Author(s):  
Xiaoyao Song ◽  
Jianhui Liu ◽  
Ningbo Geng ◽  
Yichu Shan ◽  
Baoqin Zhang ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1923
Author(s):  
Mark S. Filla ◽  
Kristy K. Meyer ◽  
Jennifer A. Faralli ◽  
Donna M. Peters

Studies from our laboratory have suggested that activation of αvβ3 integrin-mediated signaling could contribute to the fibrotic-like changes observed in primary open angle glaucoma (POAG) and glucocorticoid-induced glaucoma. To determine how αvβ3 integrin signaling could be involved in this process, RNA-Seq analysis was used to analyze the transcriptomes of immortalized trabecular meshwork (TM) cell lines overexpressing either a control vector or a wild type (WT) or a constitutively active (CA) αvβ3 integrin. Compared to control cells, hierarchical clustering, PANTHER pathway and protein-protein interaction (PPI) analysis of cells overexpressing WT-αvβ3 integrin or CA-αvβ3 integrin resulted in a significant differential expression of genes encoding for transcription factors, adhesion and cytoskeleton proteins, extracellular matrix (ECM) proteins, cytokines and GTPases. Cells overexpressing a CA-αvβ3 integrin also demonstrated an enrichment for genes encoding proteins found in TGFβ2, Wnt and cadherin signaling pathways all of which have been implicated in POAG pathogenesis. These changes were not observed in cells overexpressing WT-αvβ3 integrin. Our results suggest that activation of αvβ3 integrin signaling in TM cells could have significant impacts on TM function and POAG pathogenesis.


2021 ◽  
Author(s):  
Aram Lyu ◽  
Seo Hee Nam ◽  
Zicheng Hu ◽  
Dhivya Arasappan ◽  
Terzah M. Horton ◽  
...  
Keyword(s):  

2021 ◽  
Vol 7 (27) ◽  
pp. eabf1973
Author(s):  
Ekaterina Epifanova ◽  
Valentina Salina ◽  
Denis Lajkó ◽  
Kathrin Textoris-Taube ◽  
Thomas Naumann ◽  
...  

The neocortex is stereotypically organized into layers of excitatory neurons arranged in a precise parallel orientation. Here we show that dynamic adhesion both preceding and following radial migration is essential for this organization. Neuronal adhesion is regulated by the Mowat-Wilson syndrome-associated transcription factor Zeb2 (Sip1/Zfhx1b) through direct repression of independent adhesion pathways controlled by Neuropilin-1 (Nrp1) and Cadherin-6 (Cdh6). We reveal that to initiate radial migration, neurons must first suppress adhesion to the extracellular matrix. Zeb2 regulates the multipolar stage by transcriptional repression of Nrp1 and thereby downstream inhibition of integrin signaling. Upon completion of migration, neurons undergo an orientation process that is independent of migration. The parallel organization of neurons within the neocortex is controlled by Cdh6 through atypical regulation of integrin signaling via its RGD motif. Our data shed light on the mechanisms that regulate initiation of radial migration and the postmigratory orientation of neurons during neocortical development.


Sign in / Sign up

Export Citation Format

Share Document