acid hydrolase
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 7)

H-INDEX

32
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Mingming Han ◽  
Yuxin Liu ◽  
Tongqing Zhang ◽  
Daming Li ◽  
Qichen Jiang ◽  
...  

Berberine hydrochloride is the main active ingredient of Coptis chinensis, which has demonstrated significant antibacterial activity against bacteria. However, the molecular mechanism underlying its effects is unclear in crabs. In this study, we used transcriptome sequencing to investigate the molecules involved in the therapeutic and defensive responses of Charybdis japonica infected with 105 colony-forming units (CFU)/L of Aeromonas hydrophila following treatment with berberine hydrochloride. A total of 5,409 differentially expressed genes were observed after exposure of C. japonicus for 72 h to 100 mg/L berberine hydrochloride, 100 mg/L berberine hydrochloride plus injection of 105 CFU/L A. hydrophila, and a control group injected with equal amount of physiological saline solution. Enrichment analysis revealed that these genes were involved in metabolism, cellular processes, signal transduction, and immune function. The transcriptomic results indicated that exposure to berberine hydrochloride activated glutathione metabolism, oxidative phosphorylation, fatty acid degradation, retinol metabolism, pyruvate metabolism, and the hypoxia-inducible factor 1 signaling pathway. Transcriptomic analysis and relative mRNA level analysis also identified acid hydrolase genes and phagosomal genes as key factors regulating the adaptation of acid berberine-infused C. japonicus to infection with A. hydrophila, Based on the ability of berberine hydrochloride to induce acid hydrolase and phagosomal gene expression, which can in turn remove bacteria, immersion in berberine hydrochloride may remove A. hydrophila and thus improve the survival of C. japonica. The results of this study provided a new scientific basis for the potential role of berberine hydrochloride in the immune mechanisms of crabs.


2020 ◽  
Vol 117 (16) ◽  
pp. 9032-9041
Author(s):  
Christina R. Mikulka ◽  
Joshua T. Dearborn ◽  
Bruno A. Benitez ◽  
Amy Strickland ◽  
Lin Liu ◽  
...  

Lysosomal storage diseases (LSDs) are typically caused by a deficiency in a soluble acid hydrolase and are characterized by the accumulation of undegraded substrates in the lysosome. Determining the role of specific cell types in the pathogenesis of LSDs is a major challenge due to the secretion and subsequent uptake of lysosomal hydrolases by adjacent cells, often referred to as “cross-correction.” Here we create and validate a conditional mouse model for cell-autonomous expression of galactocerebrosidase (GALC), the lysosomal enzyme deficient in Krabbe disease. We show that lysosomal membrane-tethered GALC (GALCLAMP1) retains enzyme activity, is able to cleave galactosylsphingosine, and is unable to cross-correct. Ubiquitous expression of GALCLAMP1 fully rescues the phenotype of the GALC-deficient mouse (Twitcher), and widespread deletion of GALCLAMP1 recapitulates the Twitcher phenotype. We demonstrate the utility of this model by deleting GALCLAMP1 specifically in myelinating Schwann cells in order to characterize the peripheral neuropathy seen in Krabbe disease.


2019 ◽  
Vol 86 (2) ◽  
Author(s):  
Kelly G. Aukema ◽  
Lambros J. Tassoulas ◽  
Serina L. Robinson ◽  
Jessica F. Konopatski ◽  
Madison D. Bygd ◽  
...  

ABSTRACT Cyanuric acid is an industrial chemical produced during the biodegradation of s-triazine pesticides. The biodegradation of cyanuric acid has been elucidated using a single model system, Pseudomonas sp. strain ADP, in which cyanuric acid hydrolase (AtzD) opens the s-triazine ring and AtzEG deaminates the ring-opened product. A significant question remains as to whether the metabolic pathway found in Pseudomonas sp. ADP is the exception or the rule in bacterial genomes globally. Here, we show that most bacteria utilize a different pathway, metabolizing cyanuric acid via biuret. The new pathway was determined by reconstituting the pathway in vitro with purified enzymes and by mining more than 250,000 genomes and metagenomes. We isolated soil bacteria that grow on cyanuric acid as a sole nitrogen source and showed that the genome from a Herbaspirillum strain had a canonical cyanuric acid hydrolase gene but different flanking genes. The flanking gene trtB encoded an enzyme that we show catalyzed the decarboxylation of the cyanuric acid hydrolase product, carboxybiuret. The reaction generated biuret, a pathway intermediate further transformed by biuret hydrolase (BiuH). The prevalence of the newly defined pathway was determined by cooccurrence analysis of cyanuric acid hydrolase genes and flanking genes. Here, we show the biuret pathway was more than 1 order of magnitude more prevalent than the original Pseudomonas sp. ADP pathway. Mining a database of over 40,000 bacterial isolates with precise geospatial metadata showed that bacteria with concurrent cyanuric acid and biuret hydrolase genes were distributed throughout the United States. IMPORTANCE Cyanuric acid is produced naturally as a contaminant in urea fertilizer, and it is used as a chlorine stabilizer in swimming pools. Cyanuric acid-degrading bacteria are used commercially in removing cyanuric acid from pool water when it exceeds desired levels. The total volume of cyanuric acid produced annually exceeds 200 million kilograms, most of which enters the natural environment. In this context, it is important to have a global understanding of cyanuric acid biodegradation by microbial communities in natural and engineered systems. Current knowledge of cyanuric acid metabolism largely derives from studies on the enzymes from a single model organism, Pseudomonas sp. ADP. In this study, we obtained and studied new microbes and discovered a previously unknown cyanuric acid degradation pathway. The new pathway identified here was found to be much more prevalent than the pathway previously established for Pseudomonas sp. ADP. In addition, the types of environment, taxonomic prevalences, and geospatial distributions of the different cyanuric acid degradation pathways are described here.


PLoS ONE ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. e0216979 ◽  
Author(s):  
Ke Shi ◽  
Seunghee Cho ◽  
Kelly G. Aukema ◽  
Thomas Lee ◽  
Asim K. Bera ◽  
...  

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Austin L Bolay ◽  
Henry F Salvo ◽  
Jamie R Wallen ◽  
Mitch H Weiland

2019 ◽  
Vol 61 ◽  
pp. 132-137 ◽  
Author(s):  
Yoshiki Niimi ◽  
Shinji Ito ◽  
Yasuaki Mizutani ◽  
Kenichiro Murate ◽  
Sayuri Shima ◽  
...  

Author(s):  
Stephen Waldek

Fabry disease is a rare X-linked disorder of glycosphingolipid metabolism caused by a deficiency of the lysosomal acid hydrolase enzyme, alpha-galactosidase A. The resulting accumulation of substrate, mostly globotriaosylceramide, leads to a progressive, multiorgan disease affecting predominantly the kidneys, skin, heart, and nervous system. It is one of over 50 lysosomal storage diseases. It is typically diagnosed in young men after many years of ‘acral pain’ syndrome, when the diagnosis is made through identification of characteristic abnormalities of skin, kidney or heart, or of other organs. Renal failure has been a common outcome. Females may also develop manifestations, usually later in life. Renal biopsy shows vacuoles/deposits in podocytes and other renal cell types with progressive scarring. The diagnosis can be made by measuring enzyme levels in men, or by genetic testing. This latter is the more reliable test in women. Fabry disease can now be treated where affordable by regular (every 2 weeks) intravenous infusions of recombinant preparations of the deficient enzyme. These are burdensome and expensive, but are transforming the outlook for the condition.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Asim K Bera ◽  
Kelly G. Aukema ◽  
Mikael Elias ◽  
Lawrence P. Wackett

Sign in / Sign up

Export Citation Format

Share Document