binding sequence
Recently Published Documents


TOTAL DOCUMENTS

406
(FIVE YEARS 41)

H-INDEX

57
(FIVE YEARS 2)

Author(s):  
Zhijian Ke ◽  
Qian Zhu ◽  
Siyuan Gao ◽  
Mingliang Zhang ◽  
Mingli Jiang ◽  
...  

Previously, a LysR family transcriptional regulator McbG that activates the mcbBCDEF gene cluster involved in the upstream pathway (from carbaryl to salicylate) of carbaryl degradation in Pseudomonas sp. strain XWY-1 has been identified by us ( Appl. Environ. Microbiol. 2021, 87(9): e02970-20.). In this study, we identified McbH and McbN, which activate mcbIJKLM cluster (responsible for the midstream pathway, from salicylate to gentisate) and mcbOPQ cluster (responsible for the downstream pathway, from gentisate to pyruvate and fumarate), respectively. They both belong to the LysR family of transcriptional regulators. Gene disruption and complementation study reveal that McbH is essential for transcription of the mcbIJKLM cluster in response to salicylate and McbN is indispensable for the transcription of the mcbOPQ cluster in response to gentisate. The results of electrophoretic mobility shift assay (EMSA) and DNase I footprinting showed that McbH binds to the 52-bp motif in the mcbIJKLM promoter area and McbN binds to the 58-bp motif in the mcbOPQ promoter area. The key sequence of McbH binding to mcbIJKLM promoter is a 13-bp motif that conforms to the typical characteristics of LysR family. However, the 12-bp motif that is different from the typical characteristics of the LysR family regulator binding site sequence is identified as the key sequence for McbN to bind to the mcbOPQ promoter. This study reveals the regulatory mechanism for the midstream and downstream pathway of carbaryl degradation in strain XWY-1 and further enriches the members of the LysR transcription regulator family. IMPORTANCE: The enzyme-encoding genes involved in the complete degradation pathway of carbaryl in Pseudomonas sp. strain XWY-1 include mcbABCDEF , mcbIJKLM and mcbOPQ . Previous studies demonstrated that the mcbA gene responsible for hydrolysis of carbaryl to 1-naphthol is constitutively expressed and the transcription of mcbBCDEF was regulated by McbG. However, the transcription regulation mechanisms of mcbIJKLM and mcbOPQ have not been investigated yet. In this study, we identified two LysR-type transcriptional regulators, McbH and McbN, which activate the mcbIJKLM cluster responsible for the degradation of salicylate to gentisate and mcbOPQ cluster responsible for the degradation of gentisate to pyruvate and fumarate, respectively. The 13-bp motif is critical for McbH to bind to the promoter of mcbIJKLM , and 12-bp motif different from the typical characteristics of the LTTR binding sequence affects the binding of McbN to promoter. These findings help to expand the understanding of the regulatory mechanism of microbial degradation of carbaryl.


2021 ◽  
Author(s):  
Vinuselvi Parisutham ◽  
Shivani Chhabra ◽  
Zulfikar Ali ◽  
Robert C Brewster

Predicting the quantitative regulatory function of a TF based on factors such as binding sequence, binding location and promoter type is not possible. The interconnected nature of gene networks and the difficulty in tuning individual TF concentrations makes the isolated study of TF function challenging. Here we present a library of E. coli strains designed to allow for precise control of the concentration of individual TFs enabling the study of the role of TF concentration on physiology and regulation. We demonstrate the usefulness of this resource by measuring the regulatory function of the zinc responsive TF, ZntR and the paralogous TF pair, GalR/GalS. For ZntR, we find that zinc alters ZntR regulatory function in a way that enables activation of the regulated gene to be robust with respect to ZntR concentration. For GalR and GalS, we are able to demonstrate that these parlogous TFs have fundamentally distinct regulatory roles beyond differences in binding affinity.


2021 ◽  
Author(s):  
Limin Jiang ◽  
Fei Guo ◽  
Jijun Tang ◽  
Hui Yu ◽  
Scott Ness ◽  
...  

Abstract Efficient annotation of alterations in binding sequences of molecular regulators can help identify novel candidates for mechanisms study and offer original therapeutic hypotheses. In this work, we developed Somatic Binding Sequence Annotator (SBSA) as a full-capacity online tool to annotate altered binding motifs/sequences, addressing diverse types of genomic variants and molecular regulators. The genomic variants can be somatic mutation, single nucleotide polymorphism, RNA editing, etc. The binding motifs/sequences involve transcription factors (TFs), RNA-binding proteins, miRNA seeds, miRNA-mRNA 3′-UTR binding target, or can be any custom motifs/sequences. Compared to similar tools, SBSA is the first to support miRNA seeds and miRNA-mRNA 3′-UTR binding target, and it unprecedentedly implements a personalized genome approach that accommodates joint adjacent variants. SBSA is empowered to support an indefinite species, including preloaded reference genomes for SARS-Cov-2 and 25 other common organisms. We demonstrated SBSA by annotating multi-omics data from over 30,890 human subjects. Of the millions of somatic binding sequences identified, many are with known severe biological repercussions, such as the somatic mutation in TERT promoter region which causes a gained binding sequence for E26 transformation-specific factor (ETS1). We further validated the function of this TERT mutation using experimental data in cancer cells. Availability:http://innovebioinfo.com/Annotation/SBSA/SBSA.php.


Chemosphere ◽  
2021 ◽  
pp. 132572
Author(s):  
Xiping Hu ◽  
Chenchen Qu ◽  
Yafeng Han ◽  
Wenli Chen ◽  
Qiaoyun Huang

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samir Sissaoui ◽  
Stuart Egginton ◽  
Ling Ting ◽  
Asif Ahmed ◽  
Peter W. Hewett

AbstractPlacenta growth factor (PlGF) is a pro-inflammatory angiogenic mediator that promotes many pathologies including diabetic complications and atherosclerosis. Widespread endothelial dysfunction precedes the onset of these conditions. As very little is known of the mechanism(s) controlling PlGF expression in pathology we investigated the role of hyperglycaemia in the regulation of PlGF production in endothelial cells. Hyperglycaemia stimulated PlGF secretion in cultured primary endothelial cells, which was suppressed by IGF-1-mediated PI3K/Akt activation. Inhibition of PI3K activity resulted in significant PlGF mRNA up-regulation and protein secretion. Similarly, loss or inhibition of Akt activity significantly increased basal PlGF expression and prevented any further PlGF secretion in hyperglycaemia. Conversely, constitutive Akt activation blocked PlGF secretion irrespective of upstream PI3K activity demonstrating that Akt is a central regulator of PlGF expression. Knock-down of the Forkhead box O-1 (FOXO1) transcription factor, which is negatively regulated by Akt, suppressed both basal and hyperglycaemia-induced PlGF secretion, whilst FOXO1 gain-of-function up-regulated PlGF in vitro and in vivo. FOXO1 association to a FOXO binding sequence identified in the PlGF promoter also increased in hyperglycaemia. This study identifies the PI3K/Akt/FOXO1 signalling axis as a key regulator of PlGF expression and unifying pathway by which PlGF may contribute to common disorders characterised by endothelial dysfunction, providing a target for therapy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qiu-Long Zhang ◽  
Liang-Liang Wang ◽  
Yan Liu ◽  
Jiao Lin ◽  
Liang Xu

AbstractLigand-oligonucleotide transduction provides the critical pathway to integrate non-nucleic acid molecules into nucleic acid circuits and nanomachines for a variety of strand-displacement related applications. Herein, a general platform is constructed to convert the signals of ligands into desired oligonucleotides through a precise kinetic control. In this design, the ligand-aptamer binding sequence with an engineered duplex stem is introduced between the toehold and displacement domains of the invading strand to regulate the strand-displacement reaction. Employing this platform, we achieve efficient transduction of both small molecules and proteins orthogonally, and more importantly, establish logical and cascading operations between different ligands for versatile transduction. Besides, this platform is capable of being directly coupled with the signal amplification systems to further enhance the transduction performance. This kinetically controlled platform presents unique features with designing simplicity and flexibility, expandable complexity and system compatibility, which may pave a broad road towards nucleic acid-based developments of sophisticated transduction networks.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai Xu ◽  
Yiran Wang ◽  
Chen-Hsiang Shen ◽  
Yiwei Chen ◽  
Baoshan Zhang ◽  
...  

AbstractRIFIN, a large family of Plasmodium variant surface antigens, plays a crucial role in malaria pathogenesis by mediating immune suppression through activation of inhibitory receptors such as LAIR1, and antibodies with LAIR1 inserts have been identified that bind infected erythrocytes through RIFIN. However, details of RIFIN-mediated LAIR1 recognition and receptor activation have been unclear. Here, we use negative-stain EM to define the architecture of LAIR1-inserted antibodies and determine crystal structures of RIFIN-variable 2 (V2) domain in complex with a LAIR1 domain. These structures reveal the LAIR1-binding region of RIFIN to be hydrophobic and membrane-distal, to exhibit extensive structural diversity, and to interact with RIFIN-V2 in a one-to-one fashion. Through structural and sequence analysis of various LAIR1 constructs, we identify essential elements of RIFIN-binding on LAIR1. Furthermore, a structure-derived LAIR1-binding sequence signature ascertained >20 LAIR1-binding RIFINs, including some from P. falciparum field strains and Plasmodium species infecting gorillas and chimpanzees.


2021 ◽  
Vol 12 ◽  
Author(s):  
Seung-Ho Hwang ◽  
Hanhyeok Im ◽  
Sang Ho Choi

Vibrio vulnificus, a fulminating human pathogen, forms biofilms to enhance its survival in nature and pathogenicity during host infection. BrpR is the transcriptional regulator governing robust biofilm and rugose colony formation in V. vulnificus, but little is known about both the direct regulon of BrpR and the role of BrpR in regulation of downstream genes. In this study, transcript analyses revealed that BrpR is highly expressed and thus strongly regulates the downstream gene in the stationary and elevated cyclic di-GMP conditions. Transcriptome analyses discovered the genes, whose expression is affected by BrpR but not by the downstream regulator BrpT. Two unnamed adjacent genes (VV2_1626-1627) were newly identified among the BrpR regulon and designated as brpL and brpG in this study. Genetic analyses showed that the deletion of brpL and brpG impairs the biofilm and rugose colony formation, indicating that brpLG plays a crucial role in the development of BrpR-regulated biofilm phenotypes. Comparison of the colony morphology and exopolysaccharide (EPS) production suggested that although the genetic location and regulation of brpLG are distinct from the brp locus, brpABCDFHIJK (VV2_1574-1582), brpLG is also responsible for the robust EPS production together with the brp locus genes. Electrophoretic mobility shift assays and DNase I protection assays demonstrated that BrpR regulates the expression of downstream genes in distinct loci by directly binding to their upstream regions, revealing a palindromic binding sequence. Altogether, this study suggests that BrpR is a master regulator coordinating the expression of multiple loci responsible for EPS production and thus, contributing to the robust biofilm and rugose colony formation of V. vulnificus.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 932
Author(s):  
Annekathrin Haberland ◽  
Oxana Krylova ◽  
Heike Nikolenko ◽  
Peter Göttel ◽  
Andre Dallmann ◽  
...  

COVID-19 is a pandemic respiratory disease that is caused by the highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Anti-SARS-CoV-2 antibodies are essential weapons that a patient with COVID-19 has to combat the disease. When now repurposing a drug, namely an aptamer that interacts with SARS-CoV-2 proteins for COVID-19 treatment (BC 007), which is, however, a neutralizer of pathogenic autoantibodies in its original indication, the possibility of also binding and neutralizing anti-SARS-CoV-2 antibodies must be considered. Here, the highly specific virus-neutralizing antibodies have to be distinguished from the ones that also show cross-reactivity to tissues. The last-mentioned could be the origin of the widely reported SARS-CoV-2-induced autoimmunity, which should also become a target of therapy. We, therefore, used enzyme-linked immunosorbent assay (ELISA) technology to assess the binding of well-characterized publicly accessible anti-SARS-CoV-2 antibodies (CV07-209 and CV07-270) with BC 007. Nuclear magnetic resonance spectroscopy, isothermal calorimetric titration, and circular dichroism spectroscopy were additionally used to test the binding of BC 007 to DNA-binding sequence segments of these antibodies. BC 007 did not bind to the highly specific neutralizing anti-SARS-CoV-2 antibody but did bind to the less specific one. This, however, was a lot less compared to an autoantibody of its original indication (14.2%, range 11.0–21.5%). It was also interesting to see that the less-specific anti-SARS-CoV-2 antibody also showed a high background signal in the ELISA (binding on NeutrAvidin-coated or activated but noncoated plastic plate). These initial experiments suggest that the risk of binding and neutralizing highly specific anti-SARS CoV-2 antibodies by BC 007 should be low.


2021 ◽  
Vol 22 (8) ◽  
pp. 4104
Author(s):  
Yusuke Sugioka ◽  
Jin Nakamura ◽  
Chikara Ohtsuki ◽  
Ayae Sugawara-Narutaki

Physically crosslinked hydrogels with thixotropic properties attract considerable attention in the biomedical research field because their self-healing nature is useful in cell encapsulation, as injectable gels, and as bioinks for three-dimensional (3D) bioprinting. Here, we report the formation of thixotropic hydrogels containing nanofibers of double-hydrophobic elastin-like polypeptides (ELPs). The hydrogels are obtained with the double-hydrophobic ELPs at 0.5 wt%, the concentration of which is an order of magnitude lower than those for previously reported ELP hydrogels. Although the kinetics of hydrogel formation is slower for the double-hydrophobic ELP with a cell-binding sequence, the storage moduli G′ of mature hydrogels are similar regardless of the presence of a cell-binding sequence. Reversible gel–sol transitions are demonstrated in step-strain rheological measurements. The degree of recovery of the storage modulus G′ after the removal of high shear stress is improved by chemical crosslinking of nanofibers when intermolecular crosslinking is successful. This work would provide deeper insight into the structure–property relationships of the self-assembling polypeptides and a better design strategy for hydrogels with desired viscoelastic properties.


Sign in / Sign up

Export Citation Format

Share Document