scaling relation
Recently Published Documents


TOTAL DOCUMENTS

335
(FIVE YEARS 84)

H-INDEX

39
(FIVE YEARS 8)

Author(s):  
Chen Ji ◽  
Ralph J. Archuleta

Abstract We investigate the relation between the kinematic double-corner-frequency source spectral model JA19_2S (Ji and Archuleta, 2020) and static fault geometry scaling relations proposed by Leonard (2010). We find that the nonself-similar low-corner-frequency scaling relation of JA19_2S model can be explained using the fault length scaling relation of Leonard’s model combined with an average rupture velocity ∼70% of shear-wave speed for earthquakes 5.3 < M< 6.9. Earthquakes consistent with both models have magnitude-independent average static stress drop and average dynamic stress drop around 3 MPa. Their scaled energy e˜ is not a constant. The decrease of e˜ with magnitude can be fully explained by the magnitude dependence of the fault aspect ratio. The high-frequency source radiation is generally controlled by seismic moment, static stress drop, and dynamic stress drop but is further modulated by the fault aspect ratio and the relative location of the hypocenter. Based on these two models, the commonly quoted average rupture velocity of 70%–80% of shear-wave speed implies predominantly unilateral rupture.


Author(s):  
A. Aguado-Barahona ◽  
J. A. Rubiño-Martín ◽  
A. Ferragamo ◽  
R. Barrena ◽  
A. Streblyanska ◽  
...  

Author(s):  
M. Smit ◽  
A. Dvornik ◽  
M. Radovich ◽  
K. Kuijken ◽  
M. Maturi ◽  
...  

Author(s):  
Steven Campbell ◽  
EJ Janse van Rensburg

Abstract Numerical values of lattice star entropic exponents $\gamma_f$, and star vertex exponents $\sigma_f$, are estimated using parallel implementations of the PERM and Wang-Landau algorithms. Our results show that the numerical estimates of the vertex exponents deviate from predictions of the $\eps$-expansion and confirms and improves on estimates in the literature. We also estimate the entropic exponents $\gamma_\mathcal{G}$ of a few acyclic branched lattice networks with comb and brush connectivities. In particular, we confirm within numerical accuracy the scaling relation $$ \gamma_{\mathcal{G}}-1 = \sum_{f\geq 1} m_f \, \sigma_f $$ for a comb and two brushes (where $m_f$ is the number of nodes of degree $f$ in the network) using our independent estimates of $\sigma_f$.


2021 ◽  
Author(s):  
Yusuke T. Maeda

Abstract Gene expression via transcription-translation is the most fundamental reaction to sustain biological systems, and complex reactions such as this one occur in a small compartment of living cells. Transcriptional feedback that controls gene expression during mRNA synthesis is a vital mechanism that regulates protein synthesis in cells. There is increasing evidence that the cellular compartment induces steric effects in gene expression reactions. However, the finite-size effect of spatial constraints on feedback regulation is not well understood. Here, we study the confinement effect on transcriptional negative feedback regulation of gene expression reactions using a theoretical model. We find that negative feedback regulation alters the scaling relation of gene expression level on compartment volume, approaching the regular scaling relation without the steric effect. Our findings suggest that negative autoregulatory feedback at the transcription step can dampen the size-dependence of protein expression levels in heterogeneous cell populations.


2021 ◽  
Author(s):  
Satoko Murotani ◽  
Kenji Satake ◽  
Takeo Ishibe ◽  
Tomoya Harada

Abstract Large earthquakes around Japan occur not only in the Pacific Ocean but also in the Sea of Japan, and cause both damage from the earthquake itself and from the ensuing tsunami to the coastal areas. Recently, offshore active fault surveys were conducted in the Sea of Japan by the Integrated Research Project on Seismic and Tsunami Hazards around the Sea of Japan (JSPJ), and their fault models (length, width, strike, dip, and slip angles) have been obtained. We examined the causative faults of M7 or larger earthquakes in the Sea of Japan during the 20th century using seismic and tsunami data. The 1940 off Shakotan Peninsula earthquake (MJMA 7.5) appears to have been caused by the offshore active faults MS01, MS02, ST01, and ST02 as modelled by the JSPJ. The 1993 off the southwest coast of Hokkaido earthquake (MJMA 7.8) likely occurred on the offshore active faults OK03a, OK03b, and OK05, while the 1983 Central Sea of Japan earthquake (MJMA 7.7) probably related to MMS01, MMS04, and MGM01. For these earthquakes, the observed tsunami waveforms were basically reproduced by tsunami numerical simulation from the offshore active faults with the slip amounts obtained by the scaling relation with three stages between seismic moment and source area for inland earthquakes. However, the observed tsunami runup heights along the coast were not reproduced at certain locations, possibly because of the coarse bathymetry data used for the simulation. The 1983 west off Aomori (MJMA 7.1) and the 1964 off Oga Peninsula (MJMA 6.9) earthquakes showed multiple faults near the source area that could be used to reproduce the observed tsunami waveforms; therefore, we could not identify the causative faults. Further analysis using near-field seismic waveforms is required for their identification of their causative faults and their parameters. The scaling relation for inland earthquakes can be used to obtain the slip amounts for offshore active faults in the Sea of Japan and to estimate the coastal tsunami heights and inundation area which can be useful for disaster prevention and mitigation of future earthquakes and tsunamis in the Sea of Japan.


Author(s):  
Edward Bormashenko

An entropic origin of gravity is re-visited. Isothermal self-gravitating cloud seen as an ideal gas is analyzed. Gravitational attraction within the isothermal cloud in equilibrium is balanced by the pressure, which is of a pure entropic nature. The notion of the Jeans entropy of the cloud corresponding to the entropy of the self-gravitating cloud in mechanical and thermal equilibrium is introduced. Balance of the gravitational compression and the entropic repulsion yields the scaling relation hinting to the entropic origin of the gravitational force. The analysis of the Jeans instability enables elimination of the “holographic screen” or “holographic principle” necessary for grounding of the entropic origin of gravity.


Author(s):  
Induja Pavithran ◽  
Vishnu Rajasekharan Unni ◽  
Abhishek Saha ◽  
Alan J. Varghese ◽  
Prof. R. I. Sujith ◽  
...  

Abstract The complex interaction between the turbulent flow, combustion and the acoustic field in gas turbine engines often results in thermoacoustic instability that produces ruinously high-amplitude pressure oscillations. These self-sustained periodic oscillations may result in a sudden failure of engine components and associated electronics, and increased thermal and vibrational loads. Estimating the amplitude of the limit cycle oscillations (LCO) that are expected during thermoacoustic instability helps in devising strategies to mitigate and to limit the possible damages due to thermoacoustic instability. We propose two methodologies to estimate the amplitude using only the pressure measurements acquired during stable operation. First, we use the universal scaling relation of the amplitude of the dominant mode of oscillations with the Hurst exponent to predict the amplitude of the LCO. We also present a methodology to estimate the amplitudes of different modes of oscillations separately using ''spectral measures' which quantify the sharpening of peaks in the amplitude spectrum. The scaling relation enables us to predict the peak amplitude at thermoacoustic instability, given the data during the safe operating condition. The accuracy of prediction is tested for both methods, using the data acquired from a laboratory-scale turbulent combustor. The estimates are in good agreement with the actual amplitudes.


Sign in / Sign up

Export Citation Format

Share Document