incident power
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 29)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
С.А. Минтаиров ◽  
В.В. Евстропов ◽  
М.А. Минтаиров ◽  
М.В. Нахимович ◽  
Р.А. Салий ◽  
...  

GaInP-based laser power converters (LPC) structure grown by MOVPE and device chip design have been optimized for operation under high-power lasers of the green-red spectral range. Light IV curves records have shown the performance of the LPC up to 40-50 W/cm2 of incident power densities. The highest level data were obtained for 532 nm, 600 nm, and 633 nm power laser lines: 44.3%, 46.7%, and 40.6% under 13-16 W/cm2, respectively. LPC demonstrated an efficiency of more than 40% at elevated up to 40-50 W/cm2 of the incident laser power density.


Author(s):  
Spyros Megalou ◽  
Aggelos Bletsas ◽  
Traianos Yioultsis ◽  
Antonis G. Dimitriou

2021 ◽  
Author(s):  
Yuan Li ◽  
HongMing Yu ◽  
XinQi Yin ◽  
Juan Wu ◽  
Feng Wang ◽  
...  

Abstract The output beam quality of high-power laser systems is limited by laser-induced thermal aberration of fused silica reflective optics. A numerical model for the simulation of thermal aberration was proposed and verified by the experimental results. Simulations on the thermal aberration of fused silica optics under 3~10 kW laser irradiation with laser beam diameters of 5 mm ~ 45 mm were carried out with the verified model. The simulation results showed that the peak-valley (PV) value of thermal aberration increases with increasing incident laser power under the same incident laser spot size and reduces with increasing incident laser spot size under the same incident laser power. There are the same PV values of thermal aberration under different incident power or power densities. An analytic formula of thermal aberration PV as a function of incident laser power and beam spot size was proposed. The analytic results are in good agreement with the simulations. With these conclusions, the thermal aberration of fused silica optics under high incident power and power density can be evaluated by that under low incident power and power density. It is helpful for the design of high-power laser systems to obtain reasonable output beam quality.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5567
Author(s):  
Samir Adhikari ◽  
Emmanuel K. Ampadu ◽  
Minjun Kim ◽  
Daegwon Noh ◽  
Eunsoon Oh ◽  
...  

Detecting trace amounts of explosives to ensure personal safety is important, and this is possible by using laser-based spectroscopy techniques. We performed surface-enhanced Raman scattering (SERS) using plasmonic nanogap substrates for the solution phase detection of some nitro-based compounds, taking advantage of the hot spot at the nanogap. An excitation wavelength of 785 nm with an incident power of as low as ≈0.1 mW was used to excite the nanogap substrates. Since both RDX and PETN cannot be dissolved in water, acetone was used as a solvent. TNT was dissolved in water as well as in hexane. The main SERS peaks of TNT, RDX, and PETN were clearly observed down to the order of picomolar concentration. The variations in SERS spectra observed from different explosives can be useful in distinguishing and identifying different nitro-based compounds. This result indicates that our nanogap substrates offer an effective approach for explosives identification.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110119
Author(s):  
Kamran Mahboob ◽  
Awais A Khan ◽  
Muhammad Adeel Khan ◽  
Jawad Sarwar ◽  
Tauseef A Khan

This work presents the characteristics of a solar thermal tower power plant in two different places (Seville and Dubai) using three different HTFs (NaNO3-KNO3, KCl-MgCl2 and Li2CO3-Na2CO3-K2CO3) and three different power cycles (Rankine, sCO2 Recompression and sCO2 Partial cooling cycles). An indirect configuration is considered for the Gemasolar power plant. Detailed modelling is carried out for the conversion of incident power on the heliostat to the output electricity. Optimization of the cycle is carried out to determine the most promising cycle configuration for efficiency. The results showed that for the Gemasolar power plant configuration, the performance of the KCl-MgCl2 based plant was poorest amongst all. NaNO3-KNO3 based plant has shown good performance with the Rankine cycle but plant having Li2CO3-Na2CO3-K2CO3 as HTF was best for all three cycles. Partial cooling was the best performing cycle at both locations with all three HTFs. Placing the Seville Plant in Dubai has improved the efficiency from 23.56% to 24.33%, a capacity factor improvement of 21 and 52 GW additional power is generated. The optimization of the plant in Dubai has shown further improvements. The efficiency is improved, the Capacity factor is increased by 31.2 and 77.8 GW of additional electricity is produced.


Sign in / Sign up

Export Citation Format

Share Document