q factor
Recently Published Documents


TOTAL DOCUMENTS

1735
(FIVE YEARS 508)

H-INDEX

46
(FIVE YEARS 10)

2022 ◽  
Vol 146 ◽  
pp. 107570
Author(s):  
Jin Leng ◽  
Jun Peng ◽  
An Jin ◽  
Duo Cao ◽  
Dejun Liu ◽  
...  
Keyword(s):  
Q Factor ◽  

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 673
Author(s):  
Yaxiang Zeng ◽  
Remco Sanders ◽  
Remco J. Wiegerink ◽  
Joost C. Lötters

A micro-Coriolis mass flow sensor is a resonating device that measures small mass flows of fluid. A large vibration amplitude is desired as the Coriolis forces due to mass flow and, accordingly, the signal-to-noise ratio, are directly proportional to the vibration amplitude. Therefore, it is important to maximize the quality factor Q so that a large vibration amplitude can be achieved without requiring high actuation voltages and high power consumption. This paper presents an investigation of the Q factor of different devices in different resonant modes. Q factors were measured both at atmospheric pressure and in vacuum. The measurement results are compared with theoretical predictions. In the atmospheric environment, the Q factor increases when the resonance frequency increases. When reducing the pressure from 1 to 0.1 , the Q factor almost doubles. At even lower pressures, the Q factor is inversely proportional to the pressure until intrinsic effects start to dominate, resulting in a maximum Q factor of approximately 7200.


2022 ◽  
Author(s):  
Xuelei Zhang ◽  
Chenfeng Zhou ◽  
Ye Luo ◽  
Zhen Yang ◽  
Wei Zhang ◽  
...  

Author(s):  
Michal Křížek ◽  
Vesselin G. Gueorguiev ◽  
André Maeder

Recently it was found from Cassini data that the mean recession speed of Titan from Saturn is v = 11.3 ± 2.0 cm/yr which corresponds to a tidal quality factor of Saturn Q ≈ 100 while the standard estimate yields Q ≥ 6 · 104 . It was assumed that such a large speed v is due to a resonance locking mechanism of five inner mid-sized moons of Saturn. In this paper, we show that an essential part of v may come from a local Hubble expansion, where the Hubble-Lemaˆıtre constant H0 recalculated to the Saturn-Titan distance D is 8.15 cm/(yrD). Our hypothesis is based on many other observations showing a slight expansion of the Solar system and also of our Galaxy at a rate comparable with H0. We demonstrate that the large disproportion in estimating the Q factor can be just caused by the local expansion effect. [Accepted for publication in "Gravitation and Cosmology". The paper is to appear in Vol. 28, Issue 2 (2022) of the journal Gravitation and Cosmology.]


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 234
Author(s):  
Natalya V. Rudakova ◽  
Rashid G. Bikbaev ◽  
Pavel S. Pankin ◽  
Stepan Ya. Vetrov ◽  
Ivan V. Timofeev ◽  
...  

This numerical study demonstrates the possibility of exciting a chiral optical Tamm state localized at the interface between a cholesteric liquid crystal and a polarization-preserving anisotropic mirror conjugated to a metasurface. The difference of the proposed structure from a fully dielectric one is that the metasurface makes it possible to decrease the number of layers of a polarization-preserving anisotropic mirror by a factor of more than two at the retained Q-factor of the localized state. It is shown that the proposed structure can be used in a vertically emitting laser.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 118
Author(s):  
Jiamin Chen ◽  
Chenyang Xue ◽  
Yongqiu Zheng ◽  
Jiandong Bai ◽  
Xinyu Zhao ◽  
...  

The ideal development direction of the fiber-optic acoustic sensor (FOAS) is toward broadband, a high sensitivity and a large dynamic range. In order to further promote the acoustic detection potential of the Fabry–Pérot etalon (FPE)-based FOAS, it is of great significance to study the acoustic performance of the FOAS with the quality (Q) factor of FPE as the research objective. This is because the Q factor represents the storage capability and loss characteristic of the FPE. The three FOASs with different Q factors all achieve a broadband response from 20 Hz to 70 kHz with a flatness of ±2 dB, which is consistent with the theory that the frequency response of the FOAS is not affected by the Q factor. Moreover, the sensitivity of the FOAS is proportional to the Q factor. When the Q factor is 1.04×106, the sensitivity of the FOAS is as high as 526.8 mV/Pa. Meanwhile, the minimum detectable sound pressure of 347.33 μPa/Hz1/2  is achieved. Furthermore, with a Q factor of 0.27×106, the maximum detectable sound pressure and dynamic range are 152.32 dB and 107.2 dB, respectively, which is greatly improved compared with two other FOASs. Separately, the FOASs with different Q factors exhibit an excellent acoustic performance in weak sound detection and high sound pressure detection. Therefore, different acoustic detection requirements can be met by selecting the appropriate Q factor, which further broadens the application range and detection potential of FOASs.


2022 ◽  
Vol 20 (1) ◽  
pp. 011902
Author(s):  
Renhong Gao ◽  
Ni Yao ◽  
Jianglin Guan ◽  
Li Deng ◽  
Jintian Lin ◽  
...  
Keyword(s):  
Q Factor ◽  

Author(s):  
Yoshiaki Nishijima ◽  
Shinya Morimoto ◽  
Armandas Balcytis ◽  
Tomoki Hashizume ◽  
Ryosuke Matsubara ◽  
...  

We demonstrate extraordinarily spectrally selective narrowband mid-infrared radiation absorbance and thermal emittance with resonant peak FWHM < 124nm at λ = 5.73 μm, corresponding to a Q-factor of ~ 92.3....


Sign in / Sign up

Export Citation Format

Share Document