shear effect
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 39)

H-INDEX

22
(FIVE YEARS 3)

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2163
Author(s):  
Wenying Li ◽  
Hongyang Lin ◽  
Yang Yang ◽  
Zhenxiao Shang ◽  
Qiuhong Li ◽  
...  

Oily sludge (OS) contains a large number of hazardous materials, and froth flotation can achieve oil recovery and non-hazardous disposal of OS simultaneously. The influence of flotation parameters on OS treatment and the flotation mechanism were studied. OS samples were taken from Shengli Oilfield in May 2017 (OSS) and May 2020 (OST), respectively. Results showed that Na2SiO3 was the suitable flotation reagent treating OSS and OST, which could reduce the viscosity between oil and solids. Increasing flotation time, impeller speed and the ratio of liquid to OS could enhance the pulp shear effect, facilitate the formation of bubble and reduce pulp viscosity, respectively. Under the optimized parameters, the oil content of OST residue could be reduced to 1.2%, and that of OSS could be reduced to 0.6% because of OSS with low heavy oil components and wide solid particle size distribution. Orthogonal experimental results showed that the impeller speed was the most significant factor of all parameters for OSS and OST, and it could produce shear force to decrease the intensity of C-H bonds and destabilize the OS. The oil content of residue could be reduced effectively in the temperature range of 24–45 °C under the action of high impeller speed.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6684
Author(s):  
Sang-Woo Kim ◽  
Kil-Hee Kim

This paper proposes a method to evaluate the effect of shear on the deflection of reinforced concrete (RC) beams. The deflection of RC beams due to the effects of flexural and shear cracks shows different results from those obtained from the elastic theory. The effect of shear on deflection was compared and analyzed in this study, on the basis of experimental results and elastic theory using the virtual work method. The shear effect on the deflection of RC beams by elastic theory was extremely small. However, experimental results showed a difference of over 40% from the results predicted by elasticity theory. In this study, a new method was developed to reasonably predict the deflection of flexure-critical RC beams using the deflection incremental coefficient due to shear. The proposed method was compared with the existing experimental results obtained from the literature for verification. As a result of the comparison, the deflection obtained using ACI 318-19 underestimated the actual deflection by approximately 33%, whereas the deflection obtained by the proposed method predicted the experimental results relatively accurately.


2021 ◽  
Vol 366 (10) ◽  
Author(s):  
M. A. Bakry ◽  
A. Eid ◽  
M. M. Khader

2021 ◽  
Vol 104 (8) ◽  
Author(s):  
Jicheng Zhang ◽  
Rumeng Liu ◽  
Lifeng Wang

2021 ◽  
Vol 11 (16) ◽  
pp. 7690
Author(s):  
Sang-Woo Kim ◽  
Dong-Seok Han ◽  
Kil-Hee Kim

This study evaluates the effect of shear on the deflection of reinforced concrete (RC) beams subjected to combined bending and shear. A total of nine simply supported beams were manufactured with the shear span-to-depth ratio, tension steel ratio, and shear capacity ratio as test variables. The experimental results were used to evaluate the effect of shear on the deflection by separating them into flexural and shear deformations. The theoretical deflection of the specimens was calculated using the effective moment of inertia equation recommended by ACI 318-19 based on the curvature relationships and experimental results of the flexure critical beams. By comparing the experimental and analytical results, it was revealed that the deflection obtained using the ACI equation underestimated the experimental results by up to about 1.6 times when the shear effect was large.


2021 ◽  
Vol 28 (8) ◽  
pp. 2556-2573
Author(s):  
Ting-yao Wu ◽  
Nan Jiang ◽  
Chuan-bo Zhou ◽  
Yu-qing Xia ◽  
Yu-qi Zhang ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1486
Author(s):  
Jaehyun Shin ◽  
Il-Won Seo

In order to analyze the shear effect of secondary currents on the flow structures in a meandering channel, this research developed a two-dimensional shallow water model, which included the dispersion stress term accounting for the shear effect in the vertical velocity profile. A new equation for the vertical velocity profile that included nonlinear shear effects was derived from the equation of motion in the meandering channel with sharp curvature. Using the experiment data obtained from large-scale meandering channels, the ratio of the depth over the radius-of-curvature was incorporated into the shear intensity of the secondary flow in the proposed equation. Comparisons with the experimental results by Rozovskii (1957) showed that the computed values of the primary velocity distribution by the proposed model showed better fit with the observed data than the simulations with linear models and models without secondary flow consideration. The simulated results in the large-scale meandering channels demonstrated that simulations with the nonlinear secondary flow effect added into modeling gave higher accuracy, reducing the relative error by 19% in reproducing the skewed distributions of the primary flow in meandering channels, particularly in the regions where the effects from spiral motion were strong, due to sharp meanders.


Sign in / Sign up

Export Citation Format

Share Document