light chains
Recently Published Documents


TOTAL DOCUMENTS

2701
(FIVE YEARS 313)

H-INDEX

103
(FIVE YEARS 8)

2022 ◽  
Vol 23 (2) ◽  
pp. 950
Author(s):  
Rosaria Russo ◽  
Margherita Romeo ◽  
Tim Schulte ◽  
Martina Maritan ◽  
Luca Oberti ◽  
...  

Light chain amyloidosis (AL) is caused by the aberrant overproduction of immunoglobulin light chains (LCs). The resulting abnormally high LC concentrations in blood lead to deposit formation in the heart and other target organs. Organ damage is caused not only by the accumulation of bulky amyloid deposits, but extensive clinical data indicate that circulating soluble LCs also exert cardiotoxic effects. The nematode C. elegans has been validated to recapitulate LC soluble toxicity in vivo, and in such a model a role for copper ions in increasing LC soluble toxicity has been reported. Here, we applied microscale thermophoresis, isothermal calorimetry and thermal melting to demonstrate the specific binding of Cu2+ to the variable domain of amyloidogenic H7 with a sub-micromolar affinity. Histidine residues present in the LC sequence are not involved in the binding, and yet their mutation to Ala reduces the soluble toxicity of H7. Copper ions bind to and destabilize the variable domains and induce a limited stabilization in this domain. In summary, the data reported here, elucidate the biochemical bases of the Cu2+-induced toxicity; moreover, they also show that copper binding is just one of the several biochemical traits contributing to LC soluble in vivo toxicity.


Hemato ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 47-62
Author(s):  
Francesca Lavatelli

The deposition of amyloid light chains (LCs) in target sites translates into tissue damage and organ dysfunction. Clinical and experimental advances have cast new light on the pathophysiology of damage in AL amyloidosis. The currently accepted view is that, besides the alterations caused by fibrillar deposits in the extracellular space, direct proteotoxicity exerted by prefibrillar LC species is an important pathogenic factor. As our knowledge on the pathological species and altered cellular pathways grows, novel potential therapeutic strategies to prevent or reduce damage can be rationally explored. Complementing chemotherapy with approaches aimed at disrupting the deposited fibrils and stabilizing prefibrillar amyloidogenic LC may allow halting or even reverting damage in target sites. This review recapitulates the current knowledge and the most recent acquisitions regarding the mechanisms of organ damage in AL amyloidosis, with special emphasis on the heart, and will provide a critical discussion on possible novel treatment targets.


Author(s):  
Dieuwertje Augustijn ◽  
Joannes F. M. Jacobs ◽  
Henk Russcher

Abstract Objectives Free light chains (FLC) are important in the diagnosis, prognosis and monitoring of therapy response of patients with monoclonal gammopathies. In this study, we performed a method comparison of three FLC assays on the Cobas 6000 c501 chemistry analyzer of Roche Diagnostics. Methods Samples of 119 patients with various monoclonal gammopathies and 26 control patients were measured with the Freelite (The Binding Site), Diazyme (Diazyme Laboratories) and KLoneus (Trimero Diagnostics) FLC assays. A method comparison was performed and reference intervals of the three assays were validated. Results The analysis of the Bland-Altman agreement showed bias between the three FLC assays, ranging from −62.7 to 5.1% for κFLC and between −29.2 to 80.5% for λFLC. The Freelite and Diazyme assays have the highest agreement. The concordance of the FLC-ratio ranges from 41 to 75%, with the highest concordance between the Freelite and KLoneus assays. The FLC-ratio in 25 sera from healthy controls were within the reference ranges of the Freelite and KLoneus assays. The FLC-ratio was elevated in all 25 samples tested with the Diazyme assay. Conclusions The agreement for the free light chains is highest between the Freelite and the Diazyme assay and fair for the KLoneus assay. However, concordance of the FLC-ratio is highest when the Freelite and KLoneus assays were compared. Our data suggest that concordance for the Diazyme assay could be improved by recalibration. Because of absolute differences between the three methods in individual patients, none of the three FLC assays can be used interchangeably.


2021 ◽  
Vol 9 (3) ◽  
pp. 145-150
Author(s):  
ELGHOUAT Ghita ◽  
NAKHLI Raja ◽  
RAISSI Abderrahim ◽  
CHELLAK Saliha ◽  
BOUKHIRA Abderrahim

Multiple myeloma (MM) is a clonal proliferation of plasma cells invading the bone marrow and secreting monoclonal immunoglobulin. In order to study the epidemiological and biological and biochemical characteristics of MM, we carried out a retrospective work on a cohort of 50 cases collected at the Avicenna Military Hospital in Marrakesh, during a period of 5 years (from January 2013 to December 2017). Our study included 32 men (64%) and 18 women (36%), with an average age of 60.6 years, with extremes at 44 and 87 years. The circumstances of discovery were dominated by bone pain and alteration in general condition, which are revealing in more than 65% of cases. Biologically: the sedimentation rate was accelerated in 86% of cases, a monoclonal peak appearance was revealed on serum proteins electrophoresis in 88%of cases, most often located in the γ zone (64%), a predominance of the Ig G isotype (64%), and kappa light chains in 60% of cases, Bence Jones protein (BJP) was found in 7 patients, i.e. 14% of cases, and plasmacytosis over 10% was found on the myelograms in 90 % of cases.


2021 ◽  
Vol 23 (1) ◽  
pp. 88
Author(s):  
Kasturi Markandran ◽  
Haiyang Yu ◽  
Weihua Song ◽  
Do Thuy Uyen Ha Lam ◽  
Mufeeda Madathummal ◽  
...  

Heart failure (HF) as a result of myocardial infarction (MI) is a major cause of fatality worldwide. However, the cause of cardiac dysfunction succeeding MI has not been elucidated at a sarcomeric level. Thus, studying the alterations within the sarcomere is necessary to gain insights on the fundamental mechansims leading to HF and potentially uncover appropriate therapeutic targets. Since existing research portrays regulatory light chains (RLC) to be mediators of cardiac muscle contraction in both human and animal models, its role was further explored In this study, a detailed characterisation of the physiological changes (i.e., isometric force, calcium sensitivity and sarcomeric protein phosphorylation) was assessed in an MI mouse model, between 2D (2 days) and 28D post-MI, and the changes were related to the phosphorylation status of RLCs. MI mouse models were created via complete ligation of left anterior descending (LAD) coronary artery. Left ventricular (LV) papillary muscles were isolated and permeabilised for isometric force and Ca2+ sensitivity measurement, while the LV myocardium was used to assay sarcomeric proteins’ (RLC, troponin I (TnI) and myosin binding protein-C (MyBP-C)) phosphorylation levels and enzyme (myosin light chain kinase (MLCK), zipper interacting protein kinase (ZIPK) and myosin phosphatase target subunit 2 (MYPT2)) expression levels. Finally, the potential for improving the contractility of diseased cardiac papillary fibres via the enhancement of RLC phosphorylation levels was investigated by employing RLC exchange methods, in vitro. RLC phosphorylation and isometric force potentiation were enhanced in the compensatory phase and decreased in the decompensatory phase of HF failure progression, respectively. There was no significant time-lag between the changes in RLC phosphorylation and isometric force during HF progression, suggesting that changes in RLC phosphorylation immediately affect force generation. Additionally, the in vitro increase in RLC phosphorylation levels in 14D post-MI muscle segments (decompensatory stage) enhanced its force of isometric contraction, substantiating its potential in HF treatment. Longitudinal observation unveils potential mechanisms involving MyBP-C and key enzymes regulating RLC phosphorylation, such as MLCK and MYPT2 (subunit of MLCP), during HF progression. This study primarily demonstrates that RLC phosphorylation is a key sarcomeric protein modification modulating cardiac function. This substantiates the possibility of using RLCs and their associated enzymes to treat HF.


Author(s):  
Jyoti Das ◽  
Mahak Tiwari ◽  
Deepa Subramanyam

Clathrin is a cytosolic protein involved in the intracellular trafficking of a wide range of cargo. It is composed of three heavy chains and three light chains that together form a triskelion, the subunit that polymerizes to form a clathrin coated vesicle. In addition to its role in membrane trafficking, clathrin is also involved in various cellular and biological processes such as chromosomal segregation during mitosis and organelle biogenesis. Although the role of the heavy chains in regulating important physiological processes has been well documented, we still lack a complete understanding of how clathrin light chains regulate membrane traffic and cell signaling. This review highlights the importance and contributions of clathrin light chains in regulating clathrin assembly, vesicle formation, endocytosis of selective receptors and physiological and developmental processes.


Medicina ◽  
2021 ◽  
Vol 57 (12) ◽  
pp. 1348
Author(s):  
Karolina Woziwodzka ◽  
Jolanta Małyszko ◽  
Ewa Koc-Żórawska ◽  
Marcin Żórawski ◽  
Paulina Dumnicka ◽  
...  

Background and Objectives: Urine insulin-like growth factor-binding protein 7 (IGFBP-7), tissue inhibitor of matrix metalloproteinase 2 (TIMP-2), and neutrophil gelatinase-associated lipocalin (NGAL) monomer are novel tubular kidney injury biomarkers. In multiple myeloma (MM), immunoglobulin free light chains (FLCs) play an integral role in renal impairment. This study aimed to investigate the correlation between new biomarkers and acclaimed parameters of renal failure, MM stage, and prognosis. Materials and Methods: The examined parameters included: urinary and serum cystatin-C, IGFBP-7, and TIMP-2, and urinary NGAL monomer in 124 enrolled patients. Results: Urinary and serum IGFBP-7 and urinary NGAL were higher among patients with an estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2, and positively correlated with urine light chains. Serum and urine IGFBP-7 and urine NGAL were greater among patients with a higher disease stage. In the whole study group, urinary concentrations of the studied markers were positively correlated with each other. In multiple linear regression, urinary IGFBP-7 and NGAL were associated with lower eGFR, independently of other urinary markers. Conclusions: Urinary IGFBP-7 and NGAL monomer may be useful markers of tubular renal damage in patients with MM. Biomarker-based diagnostics may contribute to earlier treatment that may improve renal outcomes and life expectancy in MM.


2021 ◽  
Author(s):  
Allison August ◽  
Husain Z. Attarwala ◽  
Sunny Himansu ◽  
Shiva Kalidindi ◽  
Sophia Lu ◽  
...  

AbstractChikungunya virus (CHIKV) infection causes acute disease characterized by fever, rash and arthralgia, which progresses to severe and chronic arthritis in up to 50% of patients. Moreover, CHIKV infection can be fatal in infants or immunocompromised individuals and has no approved therapy or prevention. This phase 1, first-in-human, randomized, placebo-controlled, proof-of-concept trial conducted from January 2019 to June 2020 evaluated the safety and pharmacology of mRNA-1944, a lipid nanoparticle-encapsulated messenger RNA encoding the heavy and light chains of a CHIKV-specific monoclonal neutralizing antibody, CHKV-24 (NCT03829384). The primary outcome was to evaluate the safety and tolerability of escalating doses of mRNA-1944 administered via intravenous infusion in healthy participants aged 18–50 years. The secondary objectives included determination of the pharmacokinetics of mRNA encoding for CHKV-24 immunoglobulin heavy and light chains and ionizable amino lipid component and the pharmacodynamics of mRNA-1944 as assessed by serum concentrations of mRNA encoding for CHKV-24 immunoglobulin G (IgG), plasma concentrations of ionizable amino lipid and serum concentrations of CHKV-24 IgG. Here we report the results of a prespecified interim analysis of 38 healthy participants who received intravenous single doses of mRNA-1944 or placebo at 0.1, 0.3 and 0.6 mg kg−1, or two weekly doses at 0.3 mg kg−1. At 12, 24 and 48 h after single infusions, dose-dependent levels of CHKV-24 IgG with neutralizing activity were observed at titers predicted to be therapeutically relevant concentrations (≥1 µg ml−1) across doses that persisted for ≥16 weeks at 0.3 and 0.6 mg kg−1 (mean t1/2 approximately 69 d). A second 0.3 mg kg−1 dose 1 week after the first increased CHKV-24 IgG levels 1.8-fold. Adverse effects were mild to moderate in severity, did not worsen with a second mRNA-1944 dose and none were serious. To our knowledge, mRNA-1944 is the first mRNA-encoded monoclonal antibody showing in vivo expression and detectable ex vivo neutralizing activity in a clinical trial and may offer a treatment option for CHIKV infection. Further evaluation of the potential therapeutic use of mRNA-1944 in clinical trials for the treatment of CHIKV infection is warranted.


Author(s):  
Ruba S. Saadeh ◽  
Sandra C. Bryant ◽  
Andrew McKeon ◽  
Brian Weinshenker ◽  
David L. Murray ◽  
...  

2021 ◽  
Vol 23 (Supplement_G) ◽  
Author(s):  
Laura De Michieli ◽  
Luca Licchelli ◽  
Giulio Sinigiani ◽  
Tamara Berno ◽  
Mila Della Barbera ◽  
...  

Abstract Methods and results Case report— male, 71 years old. Past medical history—arterial hypertension, dyslipidemia, tobacco abuse. COPD on nocturnal CPAP therapy. Rheumatic polymyalgia on steroid therapy. Previous unprovoked deep vein thrombosis on anticoagulation with rivaroxaban. Bilateral carpal tunnel surgeries 8 years ago. Spontaneous left biceps tendon rupture 4 year ago. IgA kappa monoclonal gammopathy of undetermined significance (MGUS). Mild interventricular septum (IVS) hypertrophy on echocardiography since 2018. In 2019 IVS was 18 mm with granular sparkling appearance. In February 2020 he was hospitalized for initial heart failure and COPD exacerbation. In 2021 he developed worsening dyspnoea. He underwent cardiological evaluation in a spoke hospital and a cardiac magnetic resonance (CMR) suggested infiltrative cardiomyopathy. Bone scintigraphy showed moderate cardiac uptake (Perugini Score 2). Following haematological evaluation, fat pad biopsy was performed, and amyloid was detected on Congo red staining. Classification of the amyloid fibril protein was not performed. Bone marrow biopsy, even though of suboptimal quality, was negative for amyloid and for plasma cellular infiltration. Bone marrow aspirate showed 11% of plasma cells and multiple myeloma was therefore hypothesized. Recent medical history—he was evaluated in our Cardiac Amyloid Outpatient Clinic in May 2021. He was symptomatic for dyspnoea (NYHA class III) and exercise intolerance, diffuse osteo-muscolar pain, and extremities paresthesia. His blood pressure was on the low side of normality with necessity of anti-hypertensive therapy downgrading. Signs and symptoms of hematological disease were not present. We required to analyse the fat pad specimen in order to perform amyloid fibril protein typing; with immunoelectron microscopy, transthyretin (TTR) was identified as the amyloid fibrils precursor (no light chains could be identified). We considered performing endomyocardial biopsy to exclude the coexistence of ATTR amyloidosis and light chains (AL) amyloidosis in the heart but, given the history, clinical picture, and fat pad biopsy results, we felt that cardiac ATTR was the most probable diagnosis and we decided to proceed with a close cardiological and haematological follow-up. TTR genetic testing is ongoing. Conclusions  ATTR cardiac amyloidosis is an emerging cause of heart failure, especially with preserved ejection fraction, in the older population. However, these patients frequently present with dysproteinemias and bone marrow abnormalities, up to multiple myeloma, raising the issue of differential diagnosis between ATTR and AL amyloidosis. According to the latest European Consensus Document, in the presence of cardiac uptake at bone scintigraphy (Grades 1–3) and positive haematologic tests, histological confirmation (usually cardiac) is necessary to subtype amyloid infiltration. In our case, the patient had positive Congo Red-stained fat pad biopsy, but the typing of the amyloid deposition was not performed. After referral to a Center with a Cardiac Amyloid Outpatient Clinic with a specialized Pathology Unit, we could further proceed with diagnostic workup and identify the amyloid deposition as ATTR; of note, fat pad biopsy is positive in just 15–25% of ATTR amyloidosis. Moreover, close collaboration with Hematology was necessary to assess the risk of AL amyloidosis and to provide a close and targeted follow-up. Endomyocardial biopsy was not performed after consideration of the various elements suggestive for ATTR cardiac amyloidosis, but the patient will be evaluated periodically and closely to potentially reassess this decision.


Sign in / Sign up

Export Citation Format

Share Document