precambrian basement
Recently Published Documents


TOTAL DOCUMENTS

372
(FIVE YEARS 55)

H-INDEX

29
(FIVE YEARS 4)

Author(s):  
S. M. Mahbubul Ameen ◽  
Al-Tamini Tapu ◽  
Md. Sakawat Hossain

2021 ◽  
Vol 43 (5) ◽  
pp. 111-126
Author(s):  
I. K. Pashkevich ◽  
O. M. Rusakov

The transregional Kherson—Smolensk suture has been established to be located between large meridional faults of the crystalline crust of the Ukrainian Shield (USh) in a strip of 50—70 km width and separates two microplates of different composition of the Precambrian basement. It is traced by subcrustal mantle heterogeneity in the lithosphere and a change in the relief of the main geodynamic boundary. The suture controls the USh large multiphase magmatic massifs and manifestation of the basic mafic magmatism in the Dniepr-Donets Depressin (DDD), which age decreases from south to north from the Early Proterozoic in the shield to the Devonian in the depression. On both sides of it, the crystalline crust differs in a set of parameters including a zone of low velocities in the area of the Novokonstantinovsky ore field of the USh to the east of the Kherson—Smolensk suture, where from DSS data its maximum thickness is 10—15 km in the upper crust. It appears to bea source of abiogenic hydrogen manifestations recorded by mining operations on this field. The Kherson—Smolensk suture, being a transregional mantle feature, unites the existing hydrocarbon manifestation in the USh with the promising hydrocarbon areas of the DDD. The inhomogeneities of the crystalline crust and the uppermost mantle give strong evidences to classify reasonably the transregional tectonic suture Kherson—Smolensk as a powerful mantle long-lived magmatic and fluid-conducting channel. Ores hows and modern degassing of methane are related to it, with methane beingmain greenhouse gas.


Geology ◽  
2021 ◽  
Author(s):  
Olivia G. Thurston ◽  
William R. Guenthner ◽  
Karl E. Karlstrom ◽  
Jason W. Ricketts ◽  
Matthew T. Heizler ◽  
...  

Our study used zircon (U-Th)/He (ZHe) thermochronology to resolve cooling events of Precambrian basement below the Great Unconformity surface in the eastern Grand Canyon, United States. We combined new ZHe data with previous thermochronometric results to model the <250 °C thermal history of Precambrian basement over the past >1 Ga. Inverse models of ZHe date-effective uranium (eU) concentration, a relative measure of radiation damage that influences closure temperature, utilize He diffusion and damage annealing and suggest that the main phase of Precambrian cooling to <200 °C was between 1300 and 1250 Ma. This result agrees with mica and potassium feldspar 40Ar/39Ar thermochronology showing rapid post–1400 Ma cooling, and both are consistent with the 1255 Ma depositional age for the Unkar Group. At the young end of the timescale, our data and models are also highly sensitive to late-stage reheating due to burial beneath ~3–4 km of Phanerozoic strata prior to ca. 60 Ma; models that best match observed date-eU trends show maximum temperatures of 140–160 °C, in agreement with apatite (U-Th)/He and fission-track data. Inverse models also support multi-stage Cenozoic cooling, with post–20 Ma cooling from ~80 to 20 °C reflecting partial carving of the eastern Grand Canyon, and late rapid cooling indicated by 3–7 Ma ZHe dates over a wide range of high eU. Our ZHe data resolve major basement exhumation below the Great Unconformity during the Mesoproterozoic (1300–1250 Ma), and “young” (20–0 Ma) carving of Grand Canyon, but show little sensitivity to Neoproterozoic and Cambrian basement unroofing components of the composite Great Unconformity.


2021 ◽  
Vol 11 (21) ◽  
pp. 10013
Author(s):  
Pingchuan Zhang ◽  
Changqing Yu ◽  
Xiangzhi Zeng

A Magnetotelluric profile stretching northward from the Wulungu Depression (on the northern margin of the Junggar Basin) to the Dulate arc (crossing the Zhaheba–Aermantai ophiolite belt) was carried out in an attempt to probe the crustal structure and properties of the East Junggar, NW China. Along the profile, the inversion model was used to determine the electrical structure of the crust and uppermost mantle. The results revealed that the crust of the eastern Junggar Basin is composed of the shallow low resistivity layer and underlying high resistivity bodies. There is a crustal detachment in the basement: the upper layer is a Hercynian folded basement and the lower is a Precambrian basement. The Zhaheba complex is characterized by relatively high resistivity, with a thickness of ~5 km, the bottom controlled by the Zhaheba–Aermantai fault. The crust of the Yemaquan arc is composed of the residual continental crust, characterized by stable resistance. The exposed intrusive rocks are characterized by irregular resistors. The crust of the Dulate arc is characterized by relatively low resistivity. The shallow low resistivity layers represent the Zhaheba depression composed of the Devonian-Permian volcanic and sedimentary rocks. The crustal conductive anomalies are related to the magmatism and mechanism of metal deposits in the post-collision period.


2021 ◽  
Vol 355 ◽  
pp. 106108
Author(s):  
Mirosław Jastrzębski ◽  
Andrzej Żelaźniewcz ◽  
Jiří Sláma ◽  
Katarzyna Machowiak ◽  
Marek Śliwiński ◽  
...  

2021 ◽  
pp. M57-2016-27
Author(s):  
Denis Lavoie ◽  
Nicolas Pinet ◽  
Shunxin Zhang

AbstractThe Foxe Platform and Basin Tectono-Sedimentary Element is an ovoid-shaped, predominantly marine basin located in the Canadian Arctic. The Paleozoic sedimentary succession (Cambrian to Silurian) unconformably overlies the Precambrian basement and reaches a maximum measured thickness of slightly over 500 metres in the only exploration well drilled in this basin. The Lower Paleozoic Foxe Platform and Basin Tectono-Sedimentary Element is surrounded by Precambrian basement and by the Paleozoic Arctic Platform to the north and by the Paleozoic-Mesozoic (?) Hudson Bay Strait Platform and Basin to the south. The Paleozoic succession consists of a Cambrian clastic-dominated interval overlain by Ordovician to lower Silurian predominantly shallow marine carbonate. Other than a single well drilled in the northern part of the basin, no subsurface information is available. Thermally immature Upper Ordovician organic matter rich calcareous black shales have been mapped on the onshore extension of the basin to the southeast. Potential hydrocarbon reservoirs consist of Cambrian porous coarse-grained clastics as well as Upper Ordovician dolostones and reefs.


2021 ◽  
Author(s):  
Sabrina Kainz ◽  
Lon Abbott ◽  
Rebecca Flowers ◽  
James Metcalf

<p>Past work has used the Southern Rocky Mountains (SRM) in the U.S. state of Colorado to illustrate the important role that rock strength plays in the histories recorded by the apatite fission track (AFT) and apatite (U-Th)/He (AHe) low-temperature thermochronometers (Flowers & Ehlers, 2018). The SRM were initially raised during the Laramide Orogeny, ca. 70-45 Ma, but consensus exists that the region also experienced a later, post-Laramide exhumation event. Flowers & Ehlers (2018) pointed to the low erosion potential of the Precambrian crystalline basement rocks that crop out in most SRM ranges as a primary reason for the abundance of 55-70 Ma “Laramide” AFT and AHe dates in the region, compared to a paucity of younger dates that would presumably be produced through erosion triggered by the post-Laramide exhumation event. South-central Colorado offers a test of this hypothesis, due to lateral variations in rock erodibility provided by the presence here of both sedimentary and crystalline Laramide ranges and adjacent sedimentary basins. The combination of our ongoing AHe study with previous south-central Colorado AFT and AHe work reveals kilometer-scale post-Laramide (Oligo-Miocene) exhumation has occurred in areas that possess thick sedimentary rock sequences whereas exhumation has been negligible where crystalline basement comprises the land surface. </p><p>South-central Colorado’s Sangre de Cristo Mountains consist of an imbricate stack of thrust sheets composed of Permian sedimentary rock. About 30 km farther east stand the Wet Mountains, another Laramide range – but one composed of Precambrian basement rock. The Raton Basin, a SRM foreland basin filled with 2 km of synorogenic fill underlain by a thick sequence of marine shale, lies south and east of the two ranges. The Wet Mountains thus form a peninsula of strong crystalline rock surrounded by more erodible sedimentary rocks to the west, south, and east. </p><p>Our study and that of Landman (2018) records at least 2 km of erosion in the Raton Basin east and south of the Wet Mountains since 25 Ma. Lindsey et al (1986) obtained 24-15 Ma AFT dates from the Paleozoic sedimentary rocks of the Sangre de Cristo Mountains, demonstrating that kilometer-scale Oligo-Miocene exhumation occurred just west of the Wet Mountains. By contrast, Kelley and Chapin (2004) obtained only pre-Laramide AFT ages between 228-110 Ma for 17 samples of Precambrian basement from the crest of the Wet Mountains. A 32 Ma ash flow tuff unconformably overlies Precambrian basement on Greenhorn Mountain, the Wet Mountains’ highest and southernmost peak. Its presence reinforces the conclusion, based on the AFT dates, that Oligo-Miocene erosion of the Wet Mountain massif has been minimal simultaneous with kilometer-scale exhumation to the west, south, and east. These results illustrate the important role that rock strength plays in determining the dates recorded in low-temperature thermochronologic studies.</p>


Sign in / Sign up

Export Citation Format

Share Document