keto acid
Recently Published Documents


TOTAL DOCUMENTS

841
(FIVE YEARS 36)

H-INDEX

56
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Avis D. W. Nugroho ◽  
Berdien van Olst ◽  
Sjef Boeren ◽  
Michiel Kleerebezem ◽  
Herwig Bachmann

Manganese (Mn) is an essential trace element that is supplemented in microbial media with varying benefits across species and growth conditions. We found that growth of Lactococcus cremoris was unaffected by manganese omission from the growth medium. The main proteome adaptation to manganese omission involved increased manganese transporter production (up to 2000-fold), while the remaining 10 significant proteome changes were between 1.4 and 4 fold. Further investigation in translationally-blocked (TB), non-growing cells showed that Mn supplementation (20 µM) led to approximately 1.5X faster acidification compared to Mn-free conditions. However, this faster acidification stagnated within 24 hours, likely due to draining of intracellular NADH that coincides with substantial loss of culturability. Conversely, without manganese, non-growing cells persisted to acidify for weeks, albeit at a reduced rate, but maintaining redox balance and culturability. Strikingly, despite being unculturable, α-keto acid-derived aldehydes continued to accumulate in cells incubated in the presence of manganese, whereas without manganese cells predominantly formed the corresponding alcohols. This is most likely reflecting NADH availability for the alcohol dehydrogenase-catalyzed conversion. Overall, manganese influences the lactococcal acidification rate, and flavor formation capacity in a redox dependent manner. These are important industrial traits especially during cheese ripening, where cells are in a non-growing, often unculturable state.


2021 ◽  
Vol 20 (11) ◽  
pp. 2451-2457
Author(s):  
Ning Xiang ◽  
Haijun Liao ◽  
Zichen Zhai ◽  
Jingwen Gong

Purpose: To investigate the effect of α-keto acid tablets, and risk factors for cardiovascular calcification in patients with chronic kidney disease (CKD).Methods: A total of 128 CKD patients were enrolled in this study. They were randomly assigned to study and control groups, each with 64 patients. Control patients received symptomatic treatment, while the study group patients received α-keto acid tablets plus. Indices of cardiovascular calcification, blood lipids and mineral metabolism were determined in the 2 groups of patients and compared. Risk factors for cardiovascular calcification were also analyzed.Results: After treatment, the two groups had decreased CACS scores and reduced serum FGF-23levels, with lower values in patients in the study group. Levels of Klotho and fetuin-A were significantly elevated after treatment, with higher values observed in study group patients. The degree of cardiovascular calcification was markedly lower in study group than that in controls. There was no significant difference in blood Ca level between the control and study groups before and after treatment. Logistic multivariate analysis demonstrated that hyperlipidemia, hyperphosphatemia, hypercalcemia, hypertension and diabetes put patients at risk for cardiovascular calcification.Conclusion: Compound α-keto acid tablets delay cardiovascular calcification in patients with CKD, and alleviate symptoms of related risk factors for cardiovascular calcification.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1343
Author(s):  
Tolga Yaman ◽  
Jeremy N. Harvey

Novel density functional theory calculations are presented regarding a mechanism for prebiotic amino acid synthesis from alpha-keto acids that was suggested to happen via catalysis by dinucleotide species. Our results were analysed with comparison to the original hypothesis (Copley et al., PNAS, 2005, 102, 4442–4447). It was shown that the keto acid–dinucleotide hypothesis for possible prebiotic amino acid synthesis was plausible based on an initial computational analysis, and details of the structures for the intermediates and transition states showed that there was wide scope for interactions between the keto acid and dinucleotide moieties that could affect the free energy profiles and lead to the required proto-metabolic selectivity.


Author(s):  
Takumi Yamane ◽  
Yasuyuki Kitaura ◽  
Ken Iwatsuki ◽  
Yoshiharu Shimomura ◽  
Yuichi Oishi

Abstract We examined the effects of deletion of branched-chain α-keto acid dehydrogenase kinase (BDK), a key enzyme in branched-chain amino acid catabolism, on hyaluronan synthesis in mice. The skin levels of hyaluronan and the gene expression levels of hyaluronan synthase (Has)2, Has3 and peroxisome proliferator-activated receptor-α (PPARα) were significantly lower in the BDK-knockout group than in the wild type group.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1358
Author(s):  
Li Liu ◽  
Bohao Wang ◽  
Sheng Li ◽  
Fengyuan Xu ◽  
Qi He ◽  
...  

The activity and function of proteins can be improved by incorporation of non-canonical amino acids (ncAAs). To avoid the tedious synthesis of a large number of chiral phenylalanine derivatives, we synthesized the corresponding phenylpyruvic acid precursors. Escherichia coli strain DH10B and strain C321.ΔA.expΔPBAD were selected as hosts for phenylpyruvic acid bioconversion and genetic code expansion using the MmPylRS/pyltRNACUA system. The concentrations of keto acids, PLP and amino donors were optimized in the process. Eight keto acids that can be biotransformed and their coupled genetic code expansions were identified. Finally, the genetic encoded ncAAs were tested for incorporation into fluorescent proteins with keto acids.


2021 ◽  
Vol 22 (17) ◽  
pp. 9442
Author(s):  
Yasuhiro Mie ◽  
Shizuka Katagai ◽  
Chitose Mikami

A nanoporous gold (NPG) electrode prepared through a facile anodization technique was employed in the electrochemical reductive amination of biomass-derivable α-keto acids in the presence of a nitrogen source to produce the corresponding amino acids. NPG showed a clear reductive current in the presence of α-keto acid and NH2OH, and the electrolysis experiments confirmed the production of L-amino acid. A reductive voltammetric signal at the NPG electrode appeared at a more positive potential by 0.18–0.79 V, compared with those at the planar-gold electrode without anodization and other previously reported electrode systems, indicating the high activity of the prepared nanostructure for the electrochemical reaction. Maximum Faradaic efficiencies (FEs) of 74–93% in the reductive molecular conversion to amino acids of Ala, Asp, Glu, Gly, and Leu were obtained under the optimized conditions. The FE values were strongly dependent on the applied potential in the electrolysis, suggesting that the hydrogen evolution reaction at the electrode surface was more significant as the applied potential became more negative. The effect of potential at the NPG was lower than that at the planar-gold electrode. These results indicate that nanostructurization decreases the overpotential for the electrochemical reductive amination, resulting in high FE.


Polyhedron ◽  
2021 ◽  
pp. 115337
Author(s):  
He Zhao ◽  
Niannian Ni ◽  
Xiaonian Li ◽  
Dongping Cheng ◽  
Xiaoliang Xu

Sign in / Sign up

Export Citation Format

Share Document