temperature sensors
Recently Published Documents


TOTAL DOCUMENTS

1976
(FIVE YEARS 449)

H-INDEX

54
(FIVE YEARS 9)

2022 ◽  
pp. 2110995
Author(s):  
Jenner H. L. Ngai ◽  
John Polena ◽  
Daniel Afzal ◽  
Xiguang Gao ◽  
Mihir Kapadia ◽  
...  

Author(s):  
Yu Hu ◽  
Ji-Eun Joo ◽  
Eunju Choi ◽  
Leeho Yoo ◽  
Dukyoo Jung ◽  
...  

This paper presents a few meal-monitoring systems for elder residents (especially patients) in LTCFs by using electronic weight and temperature sensors. These monitoring systems enable to convey the information of the amount of meal taken by the patients in real-time via wireless communication networks onto the mobile phones of their nurses in charge or families. Thereby, the nurses can easily spot the most patients who need immediate assistance, while the families can have relief in seeing the crucial information for the well-being of their parents at least three times a day. Meanwhile, the patients tend to suffer burns of their tongues because they can hardly recognize the temperature of hot meals served. This situation can be avoided by utilizing the meal temperature-monitoring system, which displays an alarm to the patients when the meal temperature is above the reference. These meal-monitoring systems can be easily implemented by utilizing low-cost sensor chips and Arduino NANO boards so that elder-care hospitals and nursing homes can afford to exploit them with no additional cost. Hence, we believe that the proposed monitoring systems would be a potential solution to provide a great help and relief for the professional nurses working in elder-care hospitals and nursing homes.


2022 ◽  
Vol 10 (1) ◽  
Author(s):  
K. Prashanthi ◽  
K. Krishna Mohan ◽  
Željka Antić ◽  
Kaveh Ahadi ◽  
Miroslav D. Dramicanin

AbstractHere, we report a very sensitive, non-contact, ratio-metric, and robust luminescence-based temperature sensing using a combination of conventional photoluminescence (PL) and negative thermal quenching (NTQ) mechanisms of semiconductor BiFeO3 (BFO) nanowires. Using this approach, we have demonstrated the absolute thermal sensitivity of ~ 10 mK−1 over the 300–438 K temperature range and the relative sensitivity of 0.75% K−1 at 300 K. Further, we have validated thermal sensitivity of BFO nanowires quantitatively using linear regression and analytical hierarchy process (AHP) and found close match with the experimental results. These results indicated that BFO nanowires are excellent candidates for developing high‐performance luminescence-based temperature sensors. Graphical abstract


2022 ◽  
pp. 50-52
Author(s):  
T. J. Claggett ◽  
R. W. Worrall ◽  
B. G. Lipták
Keyword(s):  

2022 ◽  
pp. 2101311
Author(s):  
Bohdan Kulyk ◽  
Beatriz F. R. Silva ◽  
Alexandre F. Carvalho ◽  
Paula Barbosa ◽  
Ana V. Girão ◽  
...  

2022 ◽  
Vol 52 (1) ◽  
pp. 94-99
Author(s):  
S K Evstropiev ◽  
V V Demidov ◽  
D V Bulyga ◽  
R V Sadovnichii ◽  
G A Pchelkin ◽  
...  

Abstract We report the development of a group of luminescent fibre-optic temperature sensors that use Ce3+-, Dy3+-, and Yb3+-doped yttrium aluminium garnet (YAG) nanophosphors as thermosensitive materials. The nanophosphors have been prepared in the form of powders with a crystallite size from 19 to 27 nm by a polymer ? salt method and exhibit bright luminescence at 550 (YAG : Ce3+), 400, 480 (YAG : Dy3+), and 1030 nm (YAG : Yb3+). The sensor design includes a silica capillary, partially filled with a nanophosphor, and two large-aperture multimode optical fibres located in the capillary, which deliver excitation light and receive and transmit the photoluminescence signal. The photoluminescence signal amplitude of all the sensors decreases exponentially with increasing temperature, pointing to characteristic thermal quenching of photoluminescence and adequate operation of the devices up to 500 °C. The highest temperature sensitivity among the fibre-optic sensors is offered by the YAG : Ce3+ nanophosphor-based devices.


IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Xiaoyue Hu ◽  
Liai Gao ◽  
Limin Huo ◽  
Lihua Li ◽  
Mengwei Er

2022 ◽  
Vol 1212 (1) ◽  
pp. 012047
Author(s):  
Yanshori ◽  
D W Nugraha ◽  
D Santi

Abstract The main objective of this paper is to design an IoT (Internet of Things) to monitor temperature and humidity for smart gardens. Temperature sensors and humidity sensors measure environmental conditions and are processed by a microcontroller. The actuator used is a spray pump that is used to spray water into the air to lower the temperature. Data from the sensors and status from the actuators are sent to the server and can be monitored via a smartphone. The data collected can be analyzed for various purposes. The result obtained is the effect of spraying on temperature reduction.


Sign in / Sign up

Export Citation Format

Share Document