average heat transfer coefficient
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 16)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 2119 (1) ◽  
pp. 012171
Author(s):  
V V Cheverda ◽  
T G Gigola ◽  
P M Somwanshi

Abstract The spatiotemporal distribution of the temperature inside a constantan foil during impacting spray is resolved experimentally in the present work. The received infrared image sequence will be used to find the local and average heat transfer coefficient of the foil. In the future, the results obtained will be used to calculate the heat flux in the region of the contact line of each drop.


2021 ◽  
pp. 180-188
Author(s):  
Gopal Sen ◽  
Mohammad Ilias Inam

This assessment is centered on the characteristics of natural convection heat transfer of Aluminium Oxide-Air nanofluid inside an inverted T-shaped enclosure with differentially heated sidewalls. The left edges of the enclosed cavity have been treated as a heated wall and are kept at a constant temperature. The right edges are also maintained at a constant temperature but lower than the heated wall. The top and bottom faces of the cavity have been considered adiabatic. The evaluation has been numerically investigated using ANSYS fluent. The effect of different significant parameters like volume fraction of nanoparticles, the shape of the enclosure, and Rayleigh number on the heat transfer characteristics inside an inverted T shape enclosure have been investigated. In this numerical analysis, a series of DNS simulations have been conducted for different Rayleigh numbers in the range of 103 to 106, the volume fraction of particles in the range 0≤ φ ≤0.1, and for the different aspect ratios for the inverted T shape have been conducted. The outcomes of this CFD analysis indicate a remarkable rise in the average heat transfer coefficient with the rising volume fraction of Al2O3 particles in the air. An increase of the average Nusselt number was also observed with the increase of Rayleigh number, but it drops slightly at a higher volume fraction of nanoparticles due to an increase in conductive heat transfer. For Rayleigh numbers ≥ 104, both the average Nusselt number and average heat transfer coefficient decrease up to a certain shape of the cavity aspect ratio. After that cavity aspect ratio, both the parameters value increase. But in the case of Rayleigh number = 103, both of the values decrease with the increase in the cavity aspect ratio.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012037
Author(s):  
Junli Guo ◽  
Jin Zou ◽  
Changlin Yang ◽  
Deping Lu ◽  
Lefei Sun

Abstract The calculation of temperature field in the mold is important for the study of solidification process of liquid steel. In order to calculate the accurate temperature field of slab in the mod, the boundary condition of heat transfer in the mold should be determined before the calculation of slab temperature. In this paper, the relationship among the average heat transfer coefficient in the mold, the physical properties of steel, the cast condition and the cooling condition is derived according to the energy conservation equation and the Fourier law of heat conduction. Furthermore, the method for determining the parameters related to the formula of boundary heat flux is introduced. Results indicate that the average heat transfer coefficient in the mold ranges from 450 to 2000 W·(m2oC)−1 for conventional caster with a casting speed ranging from 0.8 and 1.8 m·min-1. The average heat transfer coefficient increases with the increase of casting speed. Besides, the casting speed has an effect on the parameters in the formula of calculating boundary heat flux, which indicates that the casting speed and the cooling condition should be taken into consideration for determining parameters related to the formula of calculating surface heat flux in the mold.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5553
Author(s):  
Artur Blaszczuk ◽  
Szymon Jagodzik

In the research work, energy transport between a dense fluidized bed and submerged horizontal tube bundle is analyzed in the commercial external heat exchanger (EHE). In order to investigate the heat transfer behavior, the authors carried out eight performance tests in a fluidized bed heat exchange chamber with a cross-section of 2.7 × 2.3 m in depth and width and a height of 1.3 m. The authors have been developing a mechanistic model for the prediction of the average heat transfer coefficient, which includes the effect of the geometric structure of the tube bundle and the location of the heat transfer surface on the heat transfer rate. The computational results depict that the average heat transfer coefficient is essentially affected by superficial gas velocity and suspension density rather than bed particle size. The empirical correlations have been proposed for predicting heat transfer data since the existing literature data is not sufficient for industrial fluidized bed heat exchangers. On the basis of the evaluated operating conditions of an external heat exchanger, the optimal conditions where heat transfer occurs could be deduced. The developed mechanistic heat transfer model is validated by experimental data under the examined conditions.


Author(s):  
С.В. Бородкин ◽  
А.В. Иванов ◽  
И.Л. Батаронов ◽  
А.В. Кретинин

На основе уравнений теплопереноса в движущейся среде и соотношений теплопередачи в термоэлектрическом охладителе приведен сравнительный анализ методик расчета поля температуры в теплонапряженном элементе. Рассмотрены методики на основе: 1) теплового баланса, 2) среднего коэффициента теплоотдачи, 3) дифференциального коэффициента теплоотдачи, 4) прямого расчета в рамках метода конечных элементов. Установлено, что первые две методики не дают адекватного распределения поля температур, но могут быть полезны для определения принципиальной возможности заданного охлаждения с использованием термоэлектрических элементов. Последние две методики позволяют корректно рассчитать температурное поле, но для использования третьей методики необходим дифференциальный коэффициент теплоотдачи, который может быть найден из расчета по четвертой методике. Сделан вывод о необходимости комбинированного использования методик в общем случае. Методы теплового баланса и среднего коэффициента теплоотдачи позволяют определить принципиальную возможность использования термоэлектрического охлаждения конкретного теплонапряженного элемента (ТЭ). Реальные параметры системы охлаждения должны определяться в рамках комбинации методов дифференциального коэффициента теплоотдачи и конечных элементов (МКЭ). Первый из них позволяет определить теплонапряженные области и рассчитать параметры системы охлаждения, которые обеспечивают тепловую разгрузку этих областей. Второй метод используется для проведения численных экспериментов по определению коэффициента теплоотдачи реальной конструкции The article presents on the basis of the equations of heat transfer in a moving medium and the relations of heat transfer in a thermoelectric cooler, a comparative analysis of methods for calculating the temperature field in a heat-stressed element. We considered methods based on: 1) heat balance, 2) average heat transfer coefficient, 3) differential heat transfer coefficient, 4) direct calculation using the finite element method. We established that the first two methods do not provide an adequate distribution of the temperature field but can be useful for determining the principal possibility of a given cooling using thermoelectric elements. The last two methods allow us to correctly calculate the temperature field; but to use the third method, we need a differential heat transfer coefficient, which can be found from the calculation using the fourth method. We made a conclusion about the need for combined use of methods in a general case. The methods of thermal balance and average heat transfer coefficient allow us to determine the principal possibility of using thermoelectric cooling of a specific heat-stressed element. The actual parameters of the cooling system should be determined using a combination of the differential heat transfer coefficient and the finite element method. The first of them allows us to determine the heat-stressed areas and calculate the parameters of the cooling system that provide thermal discharge of these areas. The second method is used to perform numerical experiments to determine the heat transfer coefficient of a real structure


Author(s):  
Tupakula Ramakrishna ◽  
Sandipan Ghosh Moulic ◽  
Anandaroop Bhattacharya

Abstract This investigation deals with buoyancy-induced convection of air in an open-cell aluminum foam under different orientations. Metal foam samples with a porosity of 93% and pore densities of 2, 4, 8, and 16 pores per cm (PPC) were used. The average heat transfer coefficient was determined for several values of the angle of inclination of the base plate, ranging from the vertical to the horizontal, with the foam facing upwards as well as downwards. The heat transfer coefficient was found to depend on the pore density, the thickness of the foam, the orientation of the base plate, and the difference in temperature between the base plate and the ambient. In all cases, the average heat transfer coefficient was found to be higher than that of the base plate without the foam. For a given angle of inclination and foam thickness, the thermal performance of samples with lower pore density was found to be superior. Two empirical correlations for predicting the effective Nusselt number have been proposed, one for the cases where the foam faces upwards and the other for cases where the foam faces downwards, relating the Nusselt number to Rayleigh number, Darcy number, the ratio of the thickness of the foam to the length of the square base plate and the angle of inclination from the vertical in the range of −90 deg (foam facing down) to +90 deg (foam facing up). The correlation predictions were found to match with experimentally determined Nusselt numbers within ±5% when the Rayleigh number ranged from 2500 to 6500.


2021 ◽  
pp. 80-80
Author(s):  
Hussein Togun ◽  
Raadz Homod ◽  
T Tuqaabdulrazzaq

Turbulent heat transfer and hybrid Al2O3-Cu/nanofluid over vertical double forward facing-stepis numerically conducted. K-? standard model based on finite volume method in two dimensional are applied to investigate the influences of Reynolds number, step height, volume fractions hybrid Al2O3-Cu/nanofluid on thermal performance. In this paper, different step heights for three cases of vertical double FFS are adopted by five different of volume fractions of hybrid (Al2O3-Cu/water) nanofluid varied for 0.1, 0.33, 0.75, 1, and 2, while the Reynolds number different between 10000 to 40000 with temperature is constant. The main findings revealed that rise in local heat transfer coefficients with raised Reynolds number and maximum heat transfer coefficient was noticed at Re=40000. Also rises in heat transfer coefficient detected with increased volume concentrations of hybrid (Al2O3-Cu/water) nanofluid and the maximum heat transfer coefficient found at hybrid Al2O3-Cu/water nanofluid of 2% in compared with others. It?s also found that rise in surface heat transfer coefficient at 1ststep-case 2 was greater than at 1ststep-case 1 and 3 while was higher at 2ndstep-case 3. Average heat transfer coefficient with Reynolds number for all cases are presented in this paper and found that the maximum average heat transfer coefficient was at case 2 compared with case 1 and 3. Gradually increases in skin friction coefficient remarked at 1stand 2ndsteps of the channel and drop in skin friction coefficient was obtained with increased of Reynolds number. Counter of velocity was presented to show the recirculation regions at first and second steps as clarified the enrichment in heat transfer rate. Furthermore, the counter of turbulence kinetic energy contour was displayed to provide demonstration for achieving thermal performance at second step for all cases.


2020 ◽  
Vol 14 ◽  

Computation fluid dynamics (CFD) modelling of laminar heat transfer behaviour of three types of nanofluids over flat plate are studied. In the modelling the two dimensional under laminar model is used. The base fluid is pure water and the volume fraction of nanoparticles in the base fluid is 0, 1, 2, 3, and 4%. The applied Reynolds number range considered is 997.1 ≤ Re ≤ 9971. For modelling of the physical properties of the nanofluid, single phase approach is used. The effect of the volume fraction and the type of nanoparticles on the physical properties has been evaluated and presented. Then, the analysis the flow behaviour of these three nanofluids is conducted by presenting the effect of increasing the nanoparticles concentration on the velocity profile, wall shear stress, skin friction coefficient, and average heat transfer coefficient. The results show that the type of nanoparticles is an important parameter for the heat transfer enhancement as each type has shown dissimilar behaviour in this study. Moreover, a polynomial correlation has been obtained to present the relation of the wall shear stress, skin friction coefficient and average heat transfer coefficient as a function of the volume fraction for the three nanofluids.


Sign in / Sign up

Export Citation Format

Share Document