gray matter
Recently Published Documents


TOTAL DOCUMENTS

5012
(FIVE YEARS 1296)

H-INDEX

150
(FIVE YEARS 14)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Kinga Gecse ◽  
Dóra Dobos ◽  
Csaba Sándor Aranyi ◽  
Attila Galambos ◽  
Daniel Baksa ◽  
...  

AbstractAltered periaqueductal gray matter (PAG) functional connectivity contributes to brain hyperexcitability in migraine. Although tryptophan modulates neurotransmission in PAG projections through its metabolic pathways, the effect of plasma tryptophan on PAG functional connectivity (PAG-FC) in migraine has not been investigated yet. In this study, using a matched case-control design PAG-FC was measured during a resting-state functional magnetic resonance imaging session in migraine without aura patients (n = 27) and healthy controls (n = 27), and its relationship with plasma tryptophan concentration (TRP) was assessed. In addition, correlations of PAG-FC with age at migraine onset, migraine frequency, trait-anxiety and depressive symptoms were tested and the effect of TRP on these correlations was explored. Our results demonstrated that migraineurs had higher TRP compared to controls. In addition, altered PAG-FC in regions responsible for fear-cascade and pain modulation correlated with TRP only in migraineurs. There was no significant correlation in controls. It suggests increased sensitivity to TRP in migraine patients compared to controls. Trait-anxiety and depressive symptoms correlated with PAG-FC in migraine patients, and these correlations were modulated by TRP in regions responsible for emotional aspects of pain processing, but TRP did not interfere with processes that contribute to migraine attack generation or attack frequency.


2022 ◽  
Vol 15 ◽  
Author(s):  
Sébastien Celle ◽  
Claire Boutet ◽  
Cédric Annweiler ◽  
Romain Ceresetti ◽  
Vincent Pichot ◽  
...  

Background and Purpose: Leukoaraiosis, also called white matter hyperintensities (WMH), is frequently encountered in the brain of older adults. During aging, gray matter structure is also highly affected. WMH or gray matter defects are commonly associated with a higher prevalence of mild cognitive impairment. However, little is known about the relationship between WMH and gray matter. Our aim was thus to explore the relationship between leukoaraiosis severity and gray matter volume in a cohort of healthy older adults.Methods: Leukoaraiosis was rated in participants from the PROOF cohort using the Fazekas scale. Voxel-based morphometry was performed on brain scans to examine the potential link between WMH and changes of local brain volume. A neuropsychological evaluation including attentional, executive, and memory tests was also performed to explore cognition.Results: Out of 315 75-year-old subjects, 228 had punctuate foci of leukoaraiosis and 62 had begun the confluence of foci. Leukoaraiosis was associated with a decrease of gray matter in the middle temporal gyrus, in the right medial frontal gyrus, and in the left parahippocampal gyrus. It was also associated with decreased performances in memory recall, executive functioning, and depression.Conclusion: In a population of healthy older adults, leukoaraiosis was associated with gray matter defects and reduced cognitive performance. Controlling vascular risk factors and detecting early cerebrovascular disease may prevent, at least in part, dementia onset and progression.


2022 ◽  
Vol 15 ◽  
Author(s):  
Zhaoxia Qin ◽  
Huai-Bin Liang ◽  
Muwei Li ◽  
Yue Hu ◽  
Jing Wu ◽  
...  

Background: In attempts to understand the migraine patients’ overall brain functional architecture, blood oxygenation level-dependent (BOLD) signals in the white matter (WM) and gray matter (GM) were considered in the current study. Migraine, a severe and multiphasic brain condition, is characterized by recurrent attacks of headaches. BOLD fluctuations in a resting state exhibit similar temporal and spectral profiles in both WM and GM. It is feasible to explore the functional interactions between WM tracts and GM regions in migraine.Methods: Forty-eight migraineurs without aura (MWoA) and 48 healthy controls underwent resting-state functional magnetic resonance imaging. Pearson’s correlations between the mean time courses of 48 white matter (WM) bundles and 82 gray matter (GM) regions were computed for each subject. Two-sample t-tests were performed on the Pearson’s correlation coefficients (CC) to compare the differences between the MWoA and healthy controls in the GM-averaged CC of each bundle and the WM-averaged CC of each GM region.Results: The MWoAs exhibited an overall decreased average temporal CC between BOLD signals in 82 GM regions and 48 WM bundles compared with healthy controls, while little was increased. In particular, WM bundles such as left anterior corona radiata, left external capsule and bilateral superior longitudinal fasciculus had significantly decreased mean CCs with GM in MWoA. On the other hand, 16 GM regions had significantly decreased mean CCs with WM in MWoA, including some areas that are parts of the somatosensory regions, auditory cortex, temporal areas, frontal areas, cingulate cortex, and parietal cortex.Conclusion: Decreased functional connections between WM bundles and GM regions might contribute to disrupted functional connectivity between the parts of the pain processing pathway in MWoAs, which indicated that functional and connectivity abnormalities in cortical regions may not be limited to GM regions but are instead associated with functional abnormalities in WM tracts.


Author(s):  
Xiang Huang ◽  
Junyu Lin ◽  
Huifang Shang ◽  
Jing Yang

2022 ◽  
Author(s):  
Fan Yang ◽  
Hanjiaerbieke Kukun ◽  
Wenxiao Jia ◽  
Shuang Ding ◽  
Wei Zhao ◽  
...  

Abstract Background MRI-negative TLE (TLE-N) is a manifestation lacks visible MRI findings yet with detectable electrophysiological changes. In this study, differences of gray matter in drug-controlled MRI negative temporal lobe epilepsy (cTLE-N) and drug-resistant MRI negative temporal lobe epilepsy (rTLE-N) patients were calculated and analyzed by voxel-based morphology (VBM) and surface-based morphology (SBM), to discover the brain structural changes of TLE-N patients. Materials and methods Consecutive resident patients with 30 cTLE-N and 21 rTLE-N were recruited into respective groups, and 30 healthy controls’ structural MRI (sMRI) data collected as a control group. Open-source software based on VBM and SBM was deployed as gray matter volume (GMV) and cortical thickness (CT) analytic tools. Results VBM analysis showed that GMV of bilateral thalamus and right lingual gyrus of cTLE-N group, and left hippocampus, left fusiform gyrus and left thalamus of rTLE-N group were smaller compared to HC group(FDR corrected, P<0.05), while right cerebellum, inferior temporal gyrus, hippocampus, parahippocampal gyrus, amygdala, fusiform gyrus, orbital middle frontal gyrus, and left posterior central gyrus in cTLE-N group, and bilateral cerebellum and middle temporal gyrus, right fusiform gyrus, amygdala, hippocampus, and left middle occipital gyrus of rTLE-N group were greater than HC group(FDR corrected, P<0.05). SBM analysis showed that CT of the left medial orbitofrontal cortex and lateral occipital cortex in cTLE-N group, and thickness of the left medial orbitofrontal, temporal pole, middle temporal gyrus and right anterior superior cingulate cortex in rTLE-N group were thinner, compared to HC group. Correlation analysis showed that GMV and CT of different structures were correlated with age of onset, disease duration, and MoCA score. Conclusion This study utilized two different sMRI analytic tools and discovered several brain morphological changes in TLE-N. These morphological changes were also correlated with clinical variables. Further study may indicate the potential of these findings on the recognition of the TLE-N epilepsy network.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ting Su ◽  
Pei-Wen Zhu ◽  
Biao Li ◽  
Wen-Qing Shi ◽  
Qi Lin ◽  
...  

AbstractThis study proposes the use of the voxel-based morphometry (VBM) technique to investigate structural alterations of the cerebral cortex in patients with strabismus and amblyopia (SA). Sixteen patients with SA and sixteen healthy controls (HCs) underwent magnetic resonance imaging. Original whole brain images were analyzed using the VBM method. Pearson correlation analysis was performed to evaluate the relationship between mean gray matter volume (GMV) and clinical manifestations. Receiver operating characteristic (ROC) curve analysis was applied to classify the mean GMV values of the SA group and HCs. Compared with the HCs, GMV values in the SA group showed a significant difference in the right superior temporal gyrus, posterior and anterior lobes of the cerebellum, bilateral parahippocampal gyrus, and left anterior cingulate cortex. The mean GMV value in the right superior temporal gyrus, posterior and anterior lobes of the cerebellum, and bilateral parahippocampal gyrus were negatively correlated with the angle of strabismus. The ROC curve analysis of each cerebral region confirmed the accuracy of the area under the curve. Patients with SA have reduced GMV values in some brain regions. These findings might help to reveal the potential pathogenesis of SA and its relationship with the atrophy of specific regions of the brain.


2022 ◽  
Vol 12 ◽  
Author(s):  
José Tamez-Peña ◽  
Peter Rosella ◽  
Saara Totterman ◽  
Edward Schreyer ◽  
Patricia Gonzalez ◽  
...  

Purpose: To determine and characterize the radiomics features from structural MRI (MPRAGE) and Diffusion Tensor Imaging (DTI) associated with the presence of mild traumatic brain injuries on student athletes with post-concussive syndrome (PCS).Material and Methods: 122 student athletes (65 M, 57 F), median (IQR) age 18.8 (15–20) years, with a mixed level of play and sports activities, with a known history of concussion and clinical PCS, and 27 (15 M, 12 F), median (IQR) age 20 (19, 21) years, concussion free athlete subjects were MRI imaged in a clinical MR machine. MPRAGE and DTI-FA and DTI-ADC images were used to extract radiomic features from white and gray matter regions within the entire brain (2 ROI) and the eight main lobes of the brain (16 ROI) for a total of 18 analyzed regions. Radiomic features were divided into five different data sets used to train and cross-validate five different filter-based Support Vector Machines. The top selected features of the top model were described. Furthermore, the test predictions of the top four models were ensembled into a single average prediction. The average prediction was evaluated for the association to the number of concussions and time from injury.Results: Ninety-one PCS subjects passed inclusion criteria (91 Cases, 27 controls). The average prediction of the top four models had a sensitivity of 0.80, 95% CI: [0.71, 0.88] and specificity of 0.74 95%CI [0.54, 0.89] for distinguishing subjects from controls. The white matter features were strongly associated with mTBI, while the whole-brain analysis of gray matter showed the worst association. The predictive index was significantly associated with the number of concussions (p &lt; 0.0001) and associated with the time from injury (p &lt; 0.01).Conclusion: MRI Radiomic features are associated with a history of mTBI and they were successfully used to build a predictive machine learning model for mTBI for subjects with PCS associated with a history of one or more concussions.


2022 ◽  
Vol 15 ◽  
Author(s):  
Eilidh MacNicol ◽  
Paul Wright ◽  
Eugene Kim ◽  
Irene Brusini ◽  
Oscar Esteban ◽  
...  

Age-specific resources in human MRI mitigate processing biases that arise from structural changes across the lifespan. There are fewer age-specific resources for preclinical imaging, and they only represent developmental periods rather than adulthood. Since rats recapitulate many facets of human aging, it was hypothesized that brain volume and each tissue's relative contribution to total brain volume would change with age in the adult rat. Data from a longitudinal study of rats at 3, 5, 11, and 17 months old were used to test this hypothesis. Tissue volume was estimated from high resolution structural images using a priori information from tissue probability maps. However, existing tissue probability maps generated inaccurate gray matter probabilities in subcortical structures, particularly the thalamus. To address this issue, gray matter, white matter, and CSF tissue probability maps were generated by combining anatomical and signal intensity information. The effects of age on volumetric estimations were then assessed with mixed-effects models. Results showed that herein estimation of gray matter volumes better matched histological evidence, as compared to existing resources. All tissue volumes increased with age, and the tissue proportions relative to total brain volume varied across adulthood. Consequently, a set of rat brain templates and tissue probability maps from across the adult lifespan is released to expand the preclinical MRI community's fundamental resources.


Author(s):  
Jurate Aleknaviciute ◽  
Tavia E. Evans ◽  
Elif Aribas ◽  
Merel W. de Vries ◽  
Eric A. P. Steegers ◽  
...  

AbstractThe peripartum period is the highest risk interval for the onset or exacerbation of psychiatric illness in women’s lives. Notably, pregnancy and childbirth have been associated with short-term structural and functional changes in the maternal human brain. Yet the long-term effects of pregnancy on maternal brain structure remain unknown. We investigated a large population-based cohort to examine the association between parity and brain structure. In total, 2,835 women (mean age 65.2 years; all free from dementia, stroke, and cortical brain infarcts) from the Rotterdam Study underwent magnetic resonance imaging (1.5 T) between 2005 and 2015. Associations of parity with global and lobar brain tissue volumes, white matter microstructure, and markers of vascular brain disease were examined using regression models. We found that parity was associated with a larger global gray matter volume (β = 0.14, 95% CI = 0.09–0.19), a finding that persisted following adjustment for sociodemographic factors. A non-significant dose-dependent relationship was observed between a higher number of childbirths and larger gray matter volume. The gray matter volume association with parity was globally proportional across lobes. No associations were found regarding white matter volume or integrity, nor with markers of cerebral small vessel disease. The current findings suggest that pregnancy and childbirth are associated with robust long-term changes in brain structure involving a larger global gray matter volume that persists for decades. Future studies are warranted to further investigate the mechanism and physiological relevance of these differences in brain morphology.


Sign in / Sign up

Export Citation Format

Share Document