pectobacterium carotovorum
Recently Published Documents


TOTAL DOCUMENTS

403
(FIVE YEARS 123)

H-INDEX

26
(FIVE YEARS 6)

Plant Disease ◽  
2022 ◽  
Author(s):  
Utpal Handique ◽  
Yaning Cao ◽  
Dekang Wang ◽  
Ruofang Zhang ◽  
Wensi Li ◽  
...  

Pectobacterium spp. and Dickeya spp. cause blackleg and soft rot on potato worldwide (Charkowski, 2018). Potato plants (cv. Favorita or Jizhang 8#) with blackleg symptoms (vascular browning of crown stems, Fig. S1) were observed in the field in Zhangjiakou, Hebei province in 2018, and in Ningde, Fujian Province in 2019, in China. The disease incidence was around 50% and 10% in Zhangjiakou (5 ha) and Ningde (4 ha), respectively. Diseased plants (3 from each site) were collected to isolate the pathogen. Blackleg symptomatic stems were soaked in 75% ethanol for 2 min, rinsed and ground in sterile distilled water. Serial tenfold dilutions of the above solution were plated onto the crystal violet pectate agar (CVP) plate (Ge et al., 2018). Two to 3 days after incubation at 28°C, 4 bacterial colonies in total which digested pectin from the media and developed pit on CVP plates were purified and sequenced for identification using the universal 16S rRNA gene primer set 27F/1492R (Monciardini et al., 2002). Two colony sequences that showed more than 99% sequence identity to Pectobacterium punjabense type strain SS95 (MH249622) were submitted to the GenBank ( accession numbers: OK510280, MT242589). Additionally, six housekeeping genes proA (OK546205, OK546199), gyrA (OK546206, OK546200), icdA (OK546207, OK546201), mdh (OK546208, OK546202), gapA (OK546209, OK546203), and rpoS (OK546210, OK546204) of these two isolates were amplified and sequenced (Ma et al., 2007, Waleron et al., 2008). All strains show 99% to 100% identity with MH249622T . Phylogenetic trees based on 16S rRNA gene sequences (Fig. S2) and concatenated sequences of the housekeeping genes (Fig. S3) of the 2 isolates were constructed using MEGA 6.0 software (Tamura et al., 2013). Koch’s postulate was performed on potato seedlings and potato tubers (cv. Favorita) by injecting 100 μl bacterial suspension (105 CFU/ml) or sterile phosphate-buffered solution into the crown area of the stems or the tubers and kept at 100% humidity and 21°C for 1 day. Four days after inoculation, the infected area of the inoculated seedlings rotten and turned black, while the controls were symptomless (Fig. S4). Two days after inoculation, the infected tubers rotten and turned black, while the controls were symptomless (Fig. S4). Bacterial colonies were reisolated from these symptomatic tissues and identified using the same methods described above. Blackleg on potato plants or soft rot on potato has been reported to be caused by Pectobacterium atrosepticum, Pectobacterium carotovorum subsp. carotovorum, Pectobacterium carotovorum subsp. brasiliense, Pectobacterium parmentieri, Pectobacterium polaris in China (Zhao et al., 2018; Cao et al., 2021; Wang et al., 2021). To our knowledge, this is the first report of blackleg/soft rot of potato caused by Pectobacterium punjabense in China. We believe that this report will draw attention to the management of this pathogen in China.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0256562
Author(s):  
Nagina Rafique ◽  
Saiqa Bashir ◽  
Muhammad Zubair Khan ◽  
Imran Hayat ◽  
Willium Orts ◽  
...  

Pectinolytic enzymes or pectinases are synthesized naturally by numerous microbes and plants. These enzymes degrade various kinds of pectin which exist as the major component of the cell wall in plants. A pectinase gene encoding endo-polygalacturonase (endo-PGase) enzyme was isolated from Pectobacterium carotovorum a plant pathogenic strain of bacteria and successfully cloned into a secretion vector pHT43 having σA-dependent promoter for heterologous expression in Bacillus subtilis (WB800N).The desired PCR product was 1209bp which encoded an open reading frame of 402 amino acids. Recombinant proteins showed an estimated molecular weight of 48 kDa confirmed by sodium dodecyl sulphate–polyacrylamide-gel electrophoresis. Transformed B. subtilis competent cells harbouring the engineered pHT43 vector with the foreign endo-PGase gene were cultured in 2X-yeast extract tryptone medium and subsequently screened for enzyme activity at various temperatures and pH ranges. Optimal activity of recombinant endo-PGase was found at 40°C and pH 5.0. To assay the catalytic effect of metal ions, the recombinant enzyme was incubated with 1 mM concentration of various metal ions. Potassium chloride increased the enzyme activity while EDTA, Zn++ and Ca++, strongly inhibited the activity. The chromatographic analysis of enzymatic hydrolysates of polygalacturonic acid (PGA) and pectin substrates using HPLC and TLC revealed tri and tetra-galacturonates as the end products of recombinant endo-PGase hydrolysis. Conclusively, endo-PGase gene from the plant pathogenic strain was successfully expressed in Bacillus subtilis for the first time using pHT43 expression vector and could be assessed for enzyme production using a very simple medium with IPTG induction. These findings proposed that the Bacillus expression system might be safer to escape endotoxins for commercial enzyme production as compared to yeast and fungi. Additionally, the hydrolysis products generated by the recombinant endo-PGase activity offer their useful applications in food and beverage industry for quality products.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Natalia Padilla-Gálvez ◽  
Paola Luengo-Uribe ◽  
Sandra Mancilla ◽  
Amandine Maurin ◽  
Claudia Torres ◽  
...  

Abstract Background The native potatoes (Solanum tuberosum subsp. tuberosum L.) grown in Chile (Chiloé) represent a new, unexplored source of endophytes to find potential biological control agents for the prevention of bacterial diseases, like blackleg and soft rot, in potato crops. Result The objective of this study was the selection of endophytic actinobacteria from native potatoes for antagonistic activity against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum, and their potential to suppress tissue maceration symptoms in potato tubers. This potential was determined through the quorum quenching activity using a Chromobacterium violaceaum ATCC 12472 Wild type (WT) bioassay and its colonization behavior of the potato plant root system (S. tuberosum) by means of the Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) targeting technique. The results showed that although Streptomyces sp. TP199 and Streptomyces sp. A2R31 were able to inhibit the growth of the pathogens, only the Streptomyces sp. TP199 isolate inhibited Pectobacterium sp. growth and diminished tissue maceration in tubers (p ≤ 0.05). Streptomyces sp. TP199 had metal-dependent acyl homoserine lactones (AHL) quorum quenching activity in vitro and was able to colonize the root endosphere 10 days after inoculation. Conclusions We concluded that native potatoes from southern Chile possess endophyte actinobacteria that are potential agents for the disease management of soft rot and blackleg.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Huang-Pin Wu ◽  
Reymund C. Derilo ◽  
Han-Ling Chen ◽  
Tzu-Rung Li ◽  
Ruchi Briam James S. Lagitnay ◽  
...  

AbstractPectobacterium carotovorum subsp. carotovorum (Pcc) causes soft-rot disease in a wide variety of plants resulting in economic losses worldwide. It produces various types of bacteriocin to compete against related plant pathogens. Studies on how bacteriocins are extracellularly secreted are conducted to understand the mechanism of interbacterial competition. In this study, the secretion of the low-molecular-weight bacteriocins (LMWB) Carocin S1 and Carocin S3 produced by a multiple-bacteriocin producing strain of Pcc, 89-H-4, was investigated. Tn5 insertional mutagenesis was used to generate a mutant, TH22–6, incapable of LMWBs secretion. Sequence and homology analyses of the gene disrupted by transposon Tn5 insertion revealed that the gene sctT, an essential component of the injectisome type III secretion machinery (T3aSS), is required for the secretion of the bacteriocins. This result raised a question regarding the nature of the secretion mechanism of Pcc bacteriocins which was previously discovered to be secreted via T3bSS, a system that utilizes the bacterial flagellum for extracellular secretions. Our previous report has shown that bacteriocin Carocin S1 cannot be secreted by mutants that are defective of T3bSS-related genes such as flhA, flhC, flhD and fliC. We knocked out several genes making up the significant structural components of both T3aSS and T3bSS. The findings led us to hypothesize the potential roles of the T3aSS-related proteins, SctT, SctU and SctV, as flagellar T3SS chaperones in the secretion of Pcc bacteriocins. This current discovery and the findings of our previous study helped us to conceptualize a unique Type III secretion system for bacteriocin extracellular export which is a hybrid of the injectisome and flagellar secretion systems.


Plant Disease ◽  
2021 ◽  
Author(s):  
UTPAL HANDIQUE ◽  
Yaning Cao ◽  
Zhiwen Feng ◽  
Qinghua Sun ◽  
Ruofang Zhang ◽  
...  

Pectobacterium spp. and Dickeya spp. cause Blackleg on potato worldwide (Charkowski, 2018). Potato plants (cv. Innovator V4 or Favorita) with blackleg symptoms (vascular browning of crown stems or curled leaves, Fig. S1) were observed in the field in Xilingol League, Inner Mongolia in 2018, and in Chengdu, Sichuan Province in 2020, in China. The disease incidence were around 10% and 20% in Xilingol League (20 ha) and Chengdu (40 ha), respectively. Diseased plants (5 from Xilingol League, and 2 from Chengdu) were collected to isolate the pathogen. Blackleg symptomatic stems were soaked in 75% ethanol for 2 min, rinsed and ground in sterile distilled water. Serial tenfold dilutions of the above solution were plated onto the crystal violet pectate agar (CVP) plate (Ge et al., 2018). Two to 3 days after incubation at 28°C, the bacterial colonies which digested pectin from the media and developed pit on CVP plates were purified and sequenced for identification using the universal 16S rRNA gene primer set 27F/1492R (Monciardini et al., 2002). Three colony sequences that showed more than 99% sequence identity to Pectobacterium polaris type strain NIBIO1392 (NR_159086.1) were submitted to the GenBank ( accession numbers: MT242579, MT242580, and MZ489432). Additionally, six housekeeping genes proA (MZ39581–MZ395583), gyrA (MZ395569–MZ395571), icdA (MZ395572–MZ39574), mdh (MZ395575–MZ395577), gapA (MZ395578– MZ395580), and rpoS (MZ39584–MZ395586) of these three isolates were amplified and sequenced (Ma et al., 2007, Waleron et al., 2008). All strains show 99% to 100% identity with Pectobacterium polaris strain NIBIO1392. Phylogenetic trees based on 16S rRNA gene sequences (Fig. S2) and concatenated sequences of the housekeeping genes (Fig. S3) of the 3 isolates were constructed using MEGA 6.0 software (Tamura et al., 2013). Koch’s postulate was performed on potato seedlings (cv. Favorita) by injecting 100 μl bacterial suspension (107 CFU/ml) or sterile phosphate-buffered solution into the crown area of the stems and kept at 80% humidity and 21°C for 2 days. Seven days after inoculation, the infected area of the inoculated seedlings rotten and turned black or even lodged, while the controls were symptomless (Fig. S4). It was observed that isolate MZ489432 from Chengdu, Sichuan Province was more virulent than the isolates from Xilingol League (Fig. S4). Bacterial colonies were reisolated from these symptomatic seedlings and identified using the same methods described above. Blackleg on potato plants has been reported to be caused by Pectobacterium atrosepticum, Pectobacterium carotovorum subsp. carotovorum, Pectobacterium carotovorum subsp. brasiliense, and Pectobacterium parmentieri in China (Zhao et al., 2018; Cao et al., 2021). To our knowledge, this is the first report of blackleg of potato caused by Pectobacterium polaris in China. We believe that this report will draw attention to the management of this pathogen in China.


Author(s):  
Yulia V. Diubo ◽  
Artur E. Akhremchuk ◽  
Leonid N. Valentovich ◽  
Yevgeny A. Nikolaichik

The methylation profile of Pectobacterium carotovorum 2A genome was studied using the Oxford Nanopore sequencing technology. The specificity of the methylase subunits of the three restriction-modification systems of this strain was determined. Analysis of homologous systems showed the uniqueness of the type I restriction-modification system and the type IV restriction system specific to methylated DNA of this strain. The work confirms the applicability of Oxford Nanopore technology to the analysis of bacterial DNA modifications and is also the first example of such an analysis for Pectobacterium spp.


2021 ◽  
Vol 9 (11) ◽  
pp. 2270
Author(s):  
Patrice de Werra ◽  
Christophe Debonneville ◽  
Isabelle Kellenberger ◽  
Brice Dupuis

Pectobacterium and Dickeya species are the causal agents of blackleg and soft rot diseases in potatoes. The main pathogenic species identified so far on potatoes are Dickeya dianthicola, Dickeya solani, Pectobacterium atrosepticum, Pectobacterium brasiliense, Pectobacterium carotovorum, and Pectobacterium parmentieri. Ten years ago, the most prevalent Soft Rot Pectobacteriaceae in Europe were the Dickeya species, P. atrosepticum and P. carotovorum, with some variations among countries. Since then, a drastic increase in the abundance of P. brasiliense has been observed in most European countries. This shift is difficult to explain without comparing the pathogenicity of all Dickeya and Pectobacterium species. The pathogenicity of all the above-mentioned bacterial species was assessed in field trials and in vitro tuber slice trials in Switzerland. Two isolates of each species were inoculated by soaking tubers of cv. Desiree in a suspension of 105 CFU/mL, before planting in the field. For all trials, the Dickeya species were the most virulent ones, but long-term strain surveys performed in Switzerland indicate that P. brasiliense is currently the most frequent species detected. Our results show that the pathogenicity of the species is not the main factor explaining the high prevalence of P. brasiliense and P. parmentieri in the Swiss potato fields.


Author(s):  
Glecia Júnia dos Santos Carmo ◽  
Renata Castoldi ◽  
George Deroco Martins ◽  
Ana Carolina Pires Jacinto ◽  
Nilvanira Donizete Tebaldi ◽  
...  

2021 ◽  
Vol 22 (2) ◽  
Author(s):  
Angie Paola Amaya Guerrero ◽  
Mayra Eleonora Beltrán Pineda ◽  
Nadia Catalina Alfonso Vargas

La papa (Solanum tuberosum) es un tubérculo de importancia a nivel mundial; es el cuarto cultivo de interés agronómico en términos de producción y área cultivada después del arroz (Oryza sativa), el maíz (Zea mays) y el trigo (Triticum aestivum). Pectobacterium carotovorum es un agente fitopatógeno de la papa que causa la podredumbre blanda del tubérculo, y es considerada como la enfermedad poscosecha más importante, pues genera grandes pérdidas económicas a nivel del almacenamiento. El presente documento pretende dar un esbozo de la biología del patógeno, los métodos existentes para la detección de dicho agente, la descripción del quorum sensing como mecanismo de la regulación de la expresión génica de sus factores de virulencia, el mecanismo de acción del patógeno, el proceso infectivo y los métodos actuales de control.


Sign in / Sign up

Export Citation Format

Share Document